The Emergence of Microbial Protease as a Potential Anti-Cancer Agent
Cancer is one of the most dominant causes of human death globally. The most common mechanism responsible for the growth and survival of cancer cells involves inhibition of apoptosis. Numerous cytotoxic agents are used to induce apoptosis in a targeted manner. An array of conventional therapies including surgery, radiotherapy, chemotherapy and hormonal treatments targeting apoptosis exists in contemporary time which also culminates in relapse of cancer, multi-drug resistance and hazardous toxic effects on normal healthy tissues, arising from non-targeted collateral dam- age to normal healthy tissues.
In recent time, microbial protease seems to be a promising candidate for anti-cancer therapeutic management because of their specificity and efficiency in the targeted way of action. Microbial proteases are enzymes secreted from the various microbes hydrolysing the peptide bonds of proteins resulting in an inhibitory effect on growth, proliferation, invasion, metastasis, angiogenesis and motility of cancer cells. The present review will assess the anti-cancer potential of different microbial proteases reported in contemporary time. Whether microbial protease could lead to targeted onco-therapy in different human cancer will also be assessed.
1. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta 2011;85:2265– 89.
2. ChoudhariAS, Mandave PC, DeshpandeM, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical stud- ies to clinical practice. Front Pharmacol 2020;10:1614.
3. Thurston DE. Chemistry and pharmacology of anticancer drugs. CRC Press. Boca Raton; Taylor & Francis Group: 2007.
4. Ray T, PalA. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease. Apoptosis 2016;21:609– 20.
5. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975;72:3666–70.
6. Barrett AJ, McDonald JK. Nomenclature: Protease, proteinase and peptidase. Biochem J 1986;237:935.
7. Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, et al. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care 2017;21:89.
8. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull 2017;7:339–48.
9. Singh N, Tapader R, Chatterjee S, Pal A, Pal A. Subtilisin from Bacillus amyloliquefaciens induces apoptosis in breast cancer cells through ubiquitin-proteasome-mediated tubulindegra- dation. IntJ Biol Macromol 2022;220:852–65.
10. Ab Mutalib NS, Wong SH, Ser HL, Duangjai A, Woan-Fei Law J, Ratnakomala S, et al. Bioprospecting of microbes for valuable compounds to mankind. Prog Microbes Mol Biol 2020;3:a0000088.
11. Li P, Li X, Saravanan R, Li CM, Leong SSJ. Antimicrobial mac- romolecules: Synthesis methods and future applications. RSC Adv 2012;2:4031–44.
12. Garcia-Carreno FL, Navarrete Del Toro MA. Classification of proteases without tears. Biochem Educ 1997;25:161–7.
13. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Micro- biol Mol Biol Rev 1998;62:597–635.
14. Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: The database of proteolytic enzymes, their substrates and inhibi- tors. Nucleic Acids Res 2014;42:D503-9.
15. Kotb E, Alabdalall AH, Alsayed MA, Alghamdi AI, Alkhaldi E, AbdulAzeez S, et al. Isolation, screening, and identification of alkaline protease-producing bacteria and application of the most potent enzyme from Bacillus sp. Mar64. Fermentation 2023;9:637.
16. Nisha NS, Divakaran J. Optimization of alkaline protease pro- duction from Bacillus subtilis NS isolated from sea water. Afr J Biotechnol 2014;13:1707–13.
17. Ali N, Ullah N, Qasim M, Rahman H, Khan SN, Sadiq A, et al. Molecular characterization and growth optimization of halo- tolerant protease producing Bacillus subtilis strain BLK-1.5 isolated from salt mines of Karak, Pakistan. Extremophiles 2016;20:395–402.
18. Beg QK, Gupta R. Purification and characterization of an oxi- dation stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb Technol 2003;32:294– 304.
19. Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, et al. Mi- crobial proteases applications. Front Bioeng Biotechnol 2019;7:110.
20. Banerjee G, RayAK. Impact of microbial proteases on biotech- nological industries. Biotechnol Genet Eng Rev 2017;33:119– 43.
21. Preeti C, Dimpi G, Drukshakshi J, Jasbir S. Applications of mi- crobial proteases in pharmaceutical industry: An overview. Rev Med Microbiol 2011;22:96–101.
22. Ray T, Chakrabarti MK, Pal A. Hemagglutinin protease secret- ed by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model. Apoptosis 2016;21:143–54.
23. Butler DSC, Cafaro C, Putze J, Wan MLY, Tran TH, Ambite I, et al. A bacterial protease depletes c-MYC and increases survival in mouse models of bladder and colon cancer. Nat Biotechnol 2021;39:754–64.
24. Rozanov AS, Shekhovtsov SV, Bogacheva NV, Pershina EG, Ry- apolova AV, Bytyak DS, et al. Production of subtilisin proteases in bacteria and yeast. Vavilovskii Zh Genet Sel 2021;25:125– 34.
25. Ren Y, Zhao J, Feng J. Parkin binds to α/β tubulin and in- creases their ubiquitination and degradation. J Neurosci 2003;23:3316–24.
26. CorazzariM, GagliardiM, FimiaGM, PiacentiniM. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front Oncol 2017;7:78.
27. Qu J, Zou T, Lin Z. The roles of the ubiquitin-proteasome sys- tem in the endoplasmic reticulum stress pathway. IntJ Mol Sci 2021;22:1526.
28. Mazzone A, Catalani M, Costanzo M, Drusian A, Mandoli A, Russo S, et al. Evaluation of serratia peptidase in acute or chronic inflammation of otorhinolaryngology pathology: A multicentre, double-blind, randomized trial versus placebo. J Int Med Res 1990;18:379–88.
29. Araghi A, HashemiS, Sepahi AA, Faramarzi MA, Amin M. Purifi- cation and study of anti-cancer effects of Serratia marcescens serralysin. Iran J Microbiol 2019;11:320–7.
30. Kida Y, Inoue H, Shimizu T, Kuwano K. Serratia marcescens serralysin induces inflammatory responses through protease- activated receptor 2. Infect Immun 2007;75:164–74.
31. Maeda H, Matsumura Y, Molla A. Antitumor activity of some bacterial proteases: Eradication of solid tumors in mice by in- tratumor injection. Cancer Res 1987;47:563–6.
32. Bandala C, Perez-Santos JL, Lara-Padilla E, Delgado Lopez G, Anaya-Ruiz M. Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line. Asian Pac J Can- cer Prev 2013;14:891–4.
33. Schmidt JJ, Stafford RG, Bostian KA. Type A botulinum neuro- toxin proteolytic activity: Development of competitive inhibi- tors and implications for substrate specificity at the S1' bind- ing subsite. FEBS letters 1998;435:61–4.
34. Pereira FV, Ferreira-Guimarães CA, Paschoalin T, Scutti JA, Melo FM, Silva LS, et al. A natural bacterial-derived product, the metalloprotease arazyme,inhibits metastatic murine mel- anoma by inducing MMP-8 cross-reactive antibodies. PLoS ONE 2014;9:e96141.
35. Wiranowska M, Ladd S, Moscinski LC, Hill B, Haller E, Mikecz K, et al. Modulation of hyaluronan production by CD44 positive glioma cells. IntJ Cancer 2010;127:532–42.
36. Rambaruth ND, Dwek MV. Cell surface glycan-lectin interac- tions in tumor metastasis. Acta Histochem 2011;113:591–600.
37. Mummert ME, Mummert DI, Ellinger L, Takashima A. Function- al roles of hyaluronan in B16-F10 melanoma growth and ex- perimental metastasis in mice. Mol Cancer Ther 2003;2:295– 300.
38. Gutiérrez-Fernández A, Fueyo A, Folgueras AR, Garabaya C, Pennington CJ, Pilgrim S, et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 2008;68:2755–63.
39. Thakur A, Kumari S, Sharma U, Krishna K, Sinha K, Kumar S. Molecular characterization of protease producing Stenotro- phomonas and their cytotoxic effects on cancer cell lines. IntJ Cell Sci Mol Biol 2018;5:555660.
40. Kotb E, El-Nogoumy BA, Alqahtani HA, Ahmed AA, Al-Shwyeh HA, Algarudi SM, et al. A putative cytotoxic serine protease from Salmonella typhimurium UcB5 recovered from under- cooked burger. Sci Rep 2023;13:3926.
41. Woo Y, Lee HJ, JungYM, Jung YJ. Regulated necrotic cell death in alternative tumor therapeutic strategies. Cells 2020;9:2709.
42. P24153 . HAPT_VIBCH. UniProt. Available at: https://www.uni- prot.org/uniprotkb/P24153/entry. Accessed Mar 29, 2024.
43. Information on EC 3.4.24.25 – vibriolysin. BRENDA. Avail-able at: https://www.brenda-enzymes.org/enzyme. php?ecno=3.4.24.25#pH%20STABILITY. Accessed Mar 29, 2024.
44. P0A9M0. LON_ECOLI. UniProt. Available at: https://www.uni- prot.org/uniprotkb/P0A9M0/entry. Accessed Mar 29, 2024.
45. Literature summary for 3.4.21.53. BRENDA. Available at: https:// www.brenda-enzymes.org/literature.php?e=3.4.21.53&r=755395. Accessed Mar 29, 2024.
46. P00782. SUBT_BACAM. UniProt. Available at: https://www. uniprot.org/uniprotkb/P00782/entry. Accessed Mar 30, 2024.
47. Literature summary for 3.4.21.62. BRENDA. Avail- able at: https://www.brenda-enzymes.org/literature. php?e=3.4.21.62&r=717697. Accessed Mar 30, 2024.
48. P07268. PRZN_SERME. UniProt. Available at: https://www.uni- prot.org/uniprotkb/P07268/entry. Accessed Mar 30, 2024.
49. IUBMB Enzyme Nomenclature EC 3.4.24.40. International Union of Biochemistry and Molecular Biology. Available at: https://iubmb.qmul.ac.uk/enzyme/EC3/4/24/40.html. Ac- cessed Mar 30, 2024.
50. P0DPI0. BXA1_CLOBO. UniProt. Available at: https://www.uni- prot.org/uniprotkb/P0DPI0/entry. Accessed Mar 30, 2024.
51. Literature summary for 3.4.24.69. BRENDA. Available at: https:// www.brenda-enzymes.org/literature.php?e=3.4.24.69&r=710928. Accessed Mar 30, 2024.
52. Bersanetti PA, Park HY, Bae KS, Son KH, Shin DH, Hirata IY, et al. Characterization of arazyme, an exocellular metalloprotease isolated from Serratia proteamaculans culture medium. En- zyme Microb Technol 2005;37:574–81.
53. Information on EC 3.4.24.40 – serralysin. BRENDA. Available at: https://www.brenda-enzymes.org/enzyme.php?ecno=3.4.24.40. Accessed Mar 30, 2024.
54. Literature summary for 3.4.24.40. BRENDA. Available at: https:// www.brenda-enzymes.org/literature.php?e=3.4.24.40&r=756628. Accessed Mar 30, 2024.
55. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and Bacillus prodigiosus). Proc R Soc Med Surg 1909;3:1–48.
56. Al-Hilu SA, Al-Shujairi WH. Dual role of bacteria in carcinoma: Stimulation and Inhibition. IntJ Microbiol 2020;2020:4639761.
57. Karpiński TM, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics 2018;10:54.
58. Dhankhar R, Gupta V, Kumar S, Kapoor RK, Gulati P. Microbial enzymes for deprivation of amino acid metabolism in malig- nant cells: Biological strategy for cancer treatment. Appl Mi- crobiol Biotechnol 2020;104:2857–69.
59. Koosha RZ,GhadaksazA, Goleij Z, AmjadiG, Sedighian H, Me- hdizadeh S, et al. The cytotoxicity effect of recombinant araz- yme on breast and ovarian cancer cells. Eurasian J Med Oncol 2023;7:318–25.