AccScience Publishing / EJMO / Volume 8 / Issue 4 / DOI: 10.14744/ejmo.2024.39659
RESEARCH ARTICLE

Ginsenoside CK Inhibits the Proliferation of Small Cell  Lung Cancer Cells and Induces G2/M Cell Cycle Arrest and  Apoptosis via the ATM/ATR Signaling Pathway

Paison Faida1.2,4 Jing Zhao1,2 Linlin Qu1,2 Ying He3 Janvier Habumugisha5 Xiaoxuan Ma1,2 Rong Huang3 Daidi Fan1,2
Show Less
1 Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Faculty of Chemical Engineering, Northwest University, Shaanxi, China
2 Biotechnology & Biomedical Research Institute, Northwest University, Shaanxi, China
3 Shaanxi Giant Biotechnology Ltd, Xi'an, Shaanxi, China
4 Faculty of Education, Kigali Independent University, Kigali, Rwanda
5 Department of Orthodontics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
EJMO 2024, 8(4), 471–487; https://doi.org/10.14744/ejmo.2024.39659
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: To explore the anti-tumor effect of Ginsenoside compound K (CK) on small cell lung cancer (SCLC). To elucidate the underlying mechanisms of CK's effects on SCLC.

Methods: Investigation through MTT, cell colony formation assays, and AO/EB staining to assess CK’s effect on cell  proliferation. Propidium iodide (PI), Annexin V/PI staining, TUNEL assay, and western blotting to analyze CK-induced  DNA damage, G2/M arrest, and apoptosis in SCLC cells. A xenograft nude mice model to evaluate the in vivo effect of  CK on tumor growth.

Results: CK effectively inhibits the proliferation of SCLC cells in vitro. CK induces DNA damage, G2/M cell cycle arrest,  and apoptosis in SCLC cells in a dose-dependent manner. The anti-tumor effects of CK are mediated primarily through  the ATM/ATR signaling pathway. In a xenograft model, CK treatment significantly inhibits tumor growth without causing notable side effects.

Conclusion: This study provides the first evidence of CK’s anti-cancer efficacy in SCLC. The findings suggest that CK could  be a promising therapeutic approach for SCLC, opening up new opportunities for ginsenosides in lung cancer treatment.

Keywords
Anti-cancer effect
apoptosis
ATM/ATR
ginsenoside compound K (CK)
small cell lung cancer
xenograft model
Conflict of interest
The authors declare they have no competing interests.
References

1.   Aggarwal  A,  Lewison G,  Idir S,  Peters M, Aldige C,  Boerckel W, et al. The state of lung cancer research: A global analysis. J Thorac Oncol 2016;11:1040–50.


2.   Van Meerbeeck JP, Fennell DA, De Ruysscher DKM. Small-cell lung cancer. Lancet 2011;378:1741–55.

3.   Guo W,  Qiao T,  Li T. The role of stem cells in small-cell lung cancer: Evidence from chemoresistance to immunotherapy. Semin Cancer Biol 2022:87:160–169.

4.   Chang JS, Chen LT, ShanYS, LinSF, Hsiao SY, Tsai CR, et al. Com- prehensive analysis of the incidence and survival patterns of lung cancer by histologies, including rare subtypes, in the era of molecular medicine and targeted therapy: A nation-wide cancer registry-based study from Taiwan. Medicine Baltimore 2015;94:e969.

5.   Oze  I,  Hotta K, Kiura K, Ochi N, Takigawa  N, Fujiwara Y, et al. Twenty-seven years of phase  III  trials for  patients  with  ex- tensive disease small-cell lung cancer: Disappointing results. PLoS One 2009;4:e7835.

6.   Bi N, Cao J, Song Y, Shen J, Liu W, Fan J, et al. A microRNA sig- nature predicts survival in early stage small-cell lung cancer treated with surgery and adjuvant chemotherapy. PLoS One 2014;9:e91388.

7.   Fang C, Zhang J, Qi  D,  Fan X,  Luo J, Liu L, et al. Evodiamine induces  G2/M  arrest  and  apoptosis  via  mitochondrial  and endoplasmic reticulum pathways in H446 and H1688 human small-cell lung cancer cells. PLoS One 2014;9.e115204.

8.   Joshi  M, Ayoola A, Belani CP. Small-cell lung cancer: An up- date on targeted therapies. Impact Genet Targets Cancer Ther 2013;385–404.

9.   Hann CL,  Rudin CM.  Management of small-cell lung cancer: Incremental changes but hope for the future. Oncol Williston Park 2008;22:1486.

10. Dai L, Smith CD, Foroozesh M, Miele L, Qin Z. The sphingo- sine  kinase  2  inhibitor  ABC294640  displays  anti-non-small cell  lung cancer activities in vitro and in vivo.  Int J Cancer 2018;142:2153–62.

11. Chan  BA, Coward JIG. Chemotherapy advances in small-cell lung cancer. J Thorac Dis 2013;5:S565.

12. Huang MY, Zhang LL, Ding J, Lu JJ. Anticancer drug discovery from Chinese medicinal herbs. Chin Med 2018;13:1–9.

13. Yue  PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DT, et al. Pharmacogenomics  and  the  Yin/Yang  actions  of  ginseng: Anti-tumor,  angiomodulating  and  steroid-like  activities  of ginsenosides. Chin Med 2007;2:1–21.

14. Li C, DongY, Wang L, Xu G, Yang Q, Tang X, et al. Ginsenoside metabolite compound K induces apoptosis and autophagy in non-small cell lung cancer cells via AMPK–mTOR and JNK pathways. Biochem Cell Biol 2019;97:406–14.

15. Zhang S, Zhang M, Chen J, Zhao J, Su J, Zhang X. Ginsenoside compound  K regulates  HIF-1α-mediated glycolysis through bclaf1 to inhibit the proliferation of human liver cancer cells. Front Pharmacol 2020;11:583334.

16. Zhou L, Li Z, Li C, Liang Y, Yang  F. Anticancer properties and pharmaceutical applications of ginsenoside compound K: A review. Chem Biol Drug Des 2022;99:286–300.

17. Liu J, Wang Y, Yu Z, Lv G, Huang X, Lin H, et al. Functional mech- anism of ginsenoside compound K on tumor growth and me- tastasis. Integr Cancer Ther 2022;21:15347354221101204.

18. Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell 2004;118:9–17.

19. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001;15:2177–96.

20. Appella   E,  Anderson  CW.  Post-translational  modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001;268:2764–72.

21. Chen Y, Poon RYC. The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 2008;13:5016–29.

22. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 2000;14:1448–59.

23. Zhang  B,  Fu  R,  Duan Z,  Shen S, Zhu C,  Fan  D. Ginsenoside CK  induces apoptosis  in triple-negative  breast  cancer cells by  targeting  glutamine  metabolism.  Biochem  Pharmacol 2022;202:115101.

24. Lowe SW,  Ruley  HE,  Jacks T,  Housman  DE.  p53-Dependent apoptosis  modulates the cytotoxicity of anticancer agents. Cell 1993;74:957–67.

25. Banin S, Moyal L, Shieh SY, Taya Y, Anderson CW, Chessa L, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281:1674–7.

26. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, et al. DNA damage-induced activation of p53 by the check- point kinaseChk2. Science 2000;287:1824–7.

27. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998;281:1677–9.

28. Smith J, Tho LM, Xu N, Gillespie DA. The ATM–Chk2 and ATR– Chk1  pathways  in  DNA damage signaling and cancer. Adv Cancer Res 2010;108:73–112.

29. Böttger F, Semenova EA, Song JY, Ferone G, van der Vliet J, Cozijnsen M, et al. Tumor heterogeneity underlies differential cisplatinsensitivity in mouse models of small-cell lung cancer. Cell Rep 2019;27:3345–58.

30. Sarvi  S,  Mackinnon  AC, Avlonitis  N,  Bradley  M,  Rintoul  RC, Rassl  DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive  to  a  novel  neuropeptide  antagonist.  Cancer  Res 2014;74:1554–65.

31. Chen  H, Wu L, Li X, Zhu Y, Wang W, Xu C, et al. Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α- mediated glucose metabolism. Cell Mol Biol 2019;65:48–52.

32. Chen L, Meng Y, Sun Q, Zhang Z, Guo X, Sheng X, et al. Gin- senoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -in- dependent DR5 upregulation. Cell Death Dis 2016;7:e2334

33. Hu C, Song G, Zhang B, Liu Z, Chen R, Zhang H, et al. Intestinal metabolite compound K of panaxoside inhibits the growth of gastric carcinoma by augmenting apoptosis via Bid-mediated mitochondrial pathway. J Cell Mol Med 2012;16:96–106.

34. Zheng WL, Wang BJ, Wang L, Shan YP, Zou H, Song RL, et al. ROS-mediated  cell  cycle  arrest  and  apoptosis  induced  by zearalenone in mouse sertoli cells via ER stress and the ATP/AMPK pathway. Toxins Basel 2018;10:24.

35. Chong  D, Ma L, Liu F, Zhang Z, Zhao S, Huo Q, et al. Syner- gistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis. Anticancer Drugs 2017;28:831–40.

36. Sanchez-Martinez C, Gelbert LM, Lallena MJ, de Dios A. Cy- clin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 2015;25:3420–35.

37. Li Y, Jenkins CW, Nichols MA, Xiong Y. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 1994;9:2261–8.

38. Kim YJ, Kwon HC, Ko H, Park JH, Kim HY, Yoo JH, et al. Anti-tu- mor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis. Biol Pharm Bull 2008;31:826–30.

39. Duan Z, Deng J, DongY, Zhu C, Li W, Fan D. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: In vitro and in vivo. Food Funct 2017;8:3723–36.

40. Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases  in the  regulation  of  apoptosis.  Mol  Cell  Biochem 2011;351:41–58.

41. Liang L, He T, Du T,  Fan Y, Chen  D, Wang Y. Ginsenoside  Rg5 induces apoptosis and DNA damage in human cervical cancer cells. Mol Med Rep 2015;11:940–6.

42. Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers Basel 2011;3:994–1013.

43. Ljungman M. The DNA damage response—repair or despair? Environ Mol Mutagen 2010;51:879–93.

44. Yang J, Yu Y, Hamrick HE, Duerksen-Hughes PJ. ATM, ATR and DNA-PK: Initiators of the cellular genotoxic stress responses. Carcinogenesis 2003;24:1571–80.

45. Liu  K, Zheng M,  Lu  R,  Du J, Zhao Q,  Li Z, et al. The  role of CDC25C in cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell Int 2020;20:1–16.

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing