AccScience Publishing / EJMO / Volume 8 / Issue 3 / DOI: 10.14744/ejmo.2024.97120
RESEARCH ARTICLE

Unlocking the Potential of 3D Spheroid Cultures in Breast Cancer Stem Cell Enrichment and Isolation

Anan A. Ishtiah1 Omar Nafiis Hairuddin1 Badrul Hisham Yahaya1,2
Show Less
1 Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), University Sains Malaysia, Bertam 13200 Kepala Batas Penang, Malaysia
2 Breast Cancer Translational Research Program, Advanced Medical and Dental Institute (IPPT), University Sains Malaysia, Bertam Kepala Batas Penang, Malaysia
EJMO 2024, 8(3), 322–335; https://doi.org/10.14744/ejmo.2024.97120
Submitted: 31 October 2023 | Accepted: 1 April 2024 | Published: 27 May 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: The present research conducted a comparative analysis of the efficacy of three-dimensional (3D) culturing methods in enriching and isolating breast cancer stem cells (BCSCs). The study compared multicellular spheroids grown in Matrigel and in suspension with the commonly used two-dimensional (2D) monolayer culturing method.

Methods: The experiment involved a 9-day 3D multicellular spheroid culture, followed by a 24-hour monolayer culture using two breast cancer cell lines, namely MCF7 and MDA-MB-231. To evaluate BCSCs, the study assessed the expression of various surface markers, including CD44/CD24, Vimentin, and ALDH1, along with pluripotent stem cell genes like SOX2, OCT4, KLF4, and Nanog. Additionally, the Doxorubicin resistance and the capacity of single cells derived from each method to form spheroids in serum-free suspension culture were measured.

Results: The findings revealed that 3D-cultured multicellular spheroids grown in suspension exhibited a significant increase in stem cell markers and Doxorubicin resistance. Furthermore, these spheroids demonstrated a higher ability to form single-cell spheroids with a size of more than 50 µm in a serum-free medium.

Conclusion: Overall, this method of 3D culturing in suspension resulted in a substantial enrichment of BCSCs with enhanced self-renewal and proliferation capabilities when compared to both the 2D monolayer and 3D Matrigel methods. Consequently, this approach can serve as a crucial preliminary step in isolating BCSCs from cell lines using any available BCSCs isolation method. 

Keywords
Breast cancer
cancer resistance
cancer stem cells
doxorubicin
3D culture
Conflict of interest
None declared.
References

 1. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020;5:8. 

2. Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y, et al. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res 2021;163:105320. 

3. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730-7. 

4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–8. 

5. Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: An insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023;19:1577–95. 

6. Shaw FL, Harrison H, Spence K, Ablett MP, Simões BM, Farnie G, et al. A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J Mammary Gland Biol Neoplasia 2012;17:111–7. 

7. Xu ZY, Tang JN, Xie HX, Du YA, Huang L, Yu PF, et al. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int J Biol Sci 2015;11:284–94. 

8. Das PK, Pillai S, Rakib MA, Khanam JA, Gopalan V, Lam AKY, et al. Plasticity of cancer stem cell: Origin and role in disease progression and therapy resistance. Stem Cell Rev Rep 2020;16:397–412. 

9. Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer stem cells and targeting strategies. Cells 2019;8:926. 

10. Trumpp A, Wiestler OD. Mechanisms of disease: Cancer stem cells--targeting the evil twin. Nat Clin Pract Oncol 2008;5:337– 47. 

11. Zekri AN, Bahnassy A, Mourad M, Malash I, Ahmed O, Abdellateif MS. Genetic profiling of different phenotypic subsets of breast cancer stem cells (BCSCs) in breast cancer patients. Cancer Cell Int 2022;22:423. 

12. Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, et al. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022;12:1026278. 

13. Liu YC, Yeh CT, Lin KH. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells. 2020;9:1331. 

14. Koike N, Kota R, Naito Y, Hayakawa N, Matsuura T, Hishiki T, et al. 2-Nitroimidazoles induce mitochondrial stress and ferroptosis in glioma stem cells residing in a hypoxic niche. Commun Biol. 2020;3:450. 

15. S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, et al. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016;16:738. 

16. Conde I, Ribeiro AS, Paredes J. Breast cancer stem cell membrane biomarkers: Therapy targeting and clinical implications. Cells 2022;11:934. 

17. Nandi A, Chakrabarti R. Assessment of breast cancer stem cell activity using a spheroid formation assay. Kannan N, Beer P, editors. Methods in Molecular Biology. New York, NY: Springer; 2022. pp. 485–500. 

18. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707–10. 

19. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif 2003;36:59–72. 

20. Yousefnia S, Ghaedi K, Seyed Forootan F, Nasr Esfahani MH. Characterization of the stemness potency of mammospheres isolated from the breast cancer cell lines. Tumour Biol 2019;41:1010428319869101. 

21. Palomeras S, Rabionet M, Ferrer I, Sarrats A, Garcia-Romeu ML, Puig T, et al. Breast cancer stem cell culture and enrichment using poly(ε-Caprolactone) scaffolds. Molecules 2016;21:537. 

22. Zhang C, Yang Z, Dong DL, Jang TS, Knowles JC, Kim HW, et al. 3D culture technologies of cancer stem cells: Promising ex vivo tumor models. J Tissue Eng 2020;11:2041731420933407. 

23. Casagrande N, Borghese C, Agostini F, Durante C, Mazzucato M, Colombatti A, et al. In ovarian cancer multicellular spheroids, platelet releasate promotes growth, expansion of ALDH+ and CD133+ cancer stem cells, and protection against the cytotoxic effects of cisplatin, carboplatin and paclitaxel. Int J Mol Sci 2021;22:3019. 

24. Lee JW, Sung JS, Park YS, Chung S, Kim YH. Isolation of spheroid-forming single cells from gastric cancer cell lines: Enrichment of cancer stem-like cells. Biotechniques 2018;65:197– 203. 

25. Shri M, Agrawal H, Rani P, Singh D, Onteru SK. Hanging drop, a best three-dimensional (3D) culture method for primary buffalo and sheep hepatocytes. Sci Rep 2017;7:1203. 

26. Sadeghipour A, Babaheidarian P. Making formalin-fixed, paraffin embedded blocks. In: Yong WH, editor. Biobanking: Methods and Protocols. New York, NY: Springer; 2019. pp. 253–68. 

27. Wang H, Chirshev E, Hojo N, Suzuki T, Bertucci A, Pierce M, et al. The epithelial-mesenchymal transcription factor SNAI1 represses transcription of the tumor suppressor miRNA let-7 in cancer. Cancers (Basel) 2021;13:1469. 

28. Velletri T, Villa CE, Cilli D, Barzaghi B, Lo Riso P, Lupia M, et al. Single cell-derived spheroids capture the self-renewing subpopulations of metastatic ovarian cancer. Cell Death Differ 2022;29:614–26. 

29. Su M, Wang P, Wang X, Zhang M, Wei S, Liu K, Han S, Han X, Deng Y, Shen L. Nuclear CD44 Mediated by Importin β Participated in Naïve Genes Transcriptional Regulation in C3A-iCSCs. Int J Biol Sci. 2019 May 11;15(6):1252-1260. 

30. Matak D, Brodaczewska KK, Lipiec M, Szymanski Ł, Szczylik C, Czarnecka AM. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines. Cytotechnology 2017;69:565–78. 

31. Song K, Farzaneh M. Signaling pathways governing breast cancer stem cells behavior. Stem Cell Res Ther 2021;12:245. 

32. De Angelis ML, Francescangeli F, Zeuner A. Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: New challenges and therapeutic opportunities. Cancers (Basel) 2019;11:1569. 

33. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer 2018;18:407–18. 

34. Agrawal G, Ramesh A, Aishwarya P, Sally J, Ravi M. Devices and techniques used to obtain and analyze three-dimensional cell cultures. Biotechnol Prog 2021;37:e3126. 

35. Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol 2020;13:97. 

36. Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020;15:955–67. 

37. Chen S, Dong Q, Hu S, Cai J, Zhang W, Sun J, et al. Proteomic analysis of the proteins that are associated with the resistance to paclitaxel in human breast cancer cells. Mol BioSyst 2014;294–303. 

38. Reynolds DS, Tevis KM, Blessing WA, Colson YL, Zaman MH, Grinstaff MW. Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment. Sci Rep 2017;7:10382. 

39. Yilmazer A. Evaluation of cancer stemness in breast cancer and glioblastoma spheroids in vitro. 3 Biotech 2018;8:390. 

40. Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol 2021;4:1387. 

41. Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: From discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014;79– 80:3–18. 

42. Singh SK, Abbas S, Saxena AK, Tiwari S, Sharma LK, Tiwari M. Critical role of three-dimensional tumorsphere size on experimental outcome. Biotechniques 2020;69:333–8. 

43. Albrecht C, Schlegel W, Eckl P, Jagersberger T, Sadeghi K, Berger A, et al. Alterations in CD44 isoforms and HAS expression in human articular chondrocytes during the de- and re-differentiation processes. Int J Mol Med 2009;23:253–9. 

44. Zhang X, Powell K, Li L. Breast cancer stem cells: Biomarkers, identification and isolation methods, regulating mechanisms, cellular origin, and beyond. Cancers (Basel) 2020;12:3765. 

45. Vipparthi K, Hari K, Chakraborty P, Ghosh S, Kumar Patel A, Ghosh A, et al. Spontaneous emergence of non-convertible cell states with CD24-High phenotype results in phenotypic heterogeneity that associates with poor prognosis in oral cancer. Available at: https://www.biorxiv.org/content/10.1101/20 21.08.24.457509v1.full. Accessed Aug 13, 2024. 

46. Damiani E, Solorio JA, Doyle AP, Wallace HM. How reliable are in vitro IC50 values? Values vary with cytotoxicity assays in human glioblastoma cells. Toxicol Lett 2019;302:28–34. 

47. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: Utility, limitations, pitfalls, and ınterpretation in bulk and single-cell analysis. Int J Mol Sci 2021;22:12827. 

48. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol 2015;111:A3.B.1-A3.B.3. 

49. Gwak JM, Kim M, Kim HJ, Jang MH, Park SY. Expression of embryonal stem cell transcription factors in breast cancer: Oct4 as an indicator for poor clinical outcome and tamoxifen resistance. Oncotarget 2017;8:36305–18. 

50. Kleinman HK, Kim K, Kang H. Matrigel uses in cell biology and for the identification of thymosin β4, a mediator of tissue regeneration. Appl Biol Chem 2018;61:703–8. 

51. Deng L, Li D, Gu W, Liu A, Cheng X. Formation of spherical cancer stem-like cell colonies with resistance to chemotherapy drugs in the human malignant fibrous histiocytoma NMFH-1 cell line. Oncol Lett 2015;10:3323–31. 

 
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing