AccScience Publishing / EJMO / Volume 8 / Issue 3 / DOI: 10.14744/ejmo.2024.54846
RESEARCH ARTICLE

Mps1 Knockdown in Glioblastoma Induces DNA Damage and up Regulation of Histone Methyltransferase SETD2

Mohamed Jemaà1,2,3 Chamseddine Kifagi3
Show Less
1 Human Genetics Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
2 Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules Laboratory, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia
3 Department of Biology, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia
4 NGS & OMICS Data Analysis (NODA) Consulting, Flöjtvägen 10b, SE-224 68 Lund, Sweden
EJMO 2024, 8(3), 341–347; https://doi.org/10.14744/ejmo.2024.54846
Submitted: 19 January 2024 | Accepted: 20 July 2024 | Published: 10 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: The diagnosis and treatment of glioblastoma are challenging due to the fast-growing nature of the tumour. Identifying new hallmarks of the disease is important for improving patient care. This study investigates the association between the overexpression of cell cycle checkpoint kinase Mps1 and patient outcomes in glioblastoma.

Methods: We analyzed available online transcriptomic and proteomic data following Mps1 knockdown in U251 glioblastoma cells. Gene ontology enrichment analysis was performed to identify key pathways activated after Mps1 knockdown.

Results: The analysis revealed that cell cycle transition and the intrinsic apoptosis pathway in response to DNA damage were the top pathways activated following Mps1 knockdown. Three genes and proteins emerged as common targets: BCL2L1 (encoding the protein Bcl-xL) was downregulated, while CDKN1A (encoding p21) and SETD2 (encoding the histone methyltransferase SETD2) were upregulated.

Conclusion: This study is the first to report the association of Mps1 inhibition with SETD2 overexpression, providing a new perspective for glioblastoma therapeutics. 

 
Keywords
Mps1
glioblastoma
gene ontology
transcriptomic
proteomic
SETD2
Conflict of interest
None declared.
References

1. Louis DN, Perry A, Reifenberger G, von Deimling A, FigarellaBranger D, Cavenee WK, et al. The 2016 World health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016;131:803–20. 

2. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012;338:1080–4. 

3. Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, et al. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm Sin B 2022;12:1781–804. 

4. Liu X, Winey M. The MPS1 family of protein kinases. Annu Rev Biochem 2012;81:561–85. 

5. Pachis ST, Kops GJPL. Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biol 2018;8:180109. 

6. Jemaà M, Abdallah S, Lledo G, Perrot G, Lesluyes T, Teyssier C, et al. Heterogeneity in sarcoma cell lines reveals enhanced motility of tetraploid versus diploid cells. Oncotarget 2017;8:16669–89. 

7. Daniel J, Coulter J, Woo JH, Wilsbach K, Gabrielson E. High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc Natl Acad Sci U S A 2011;108:5384–9. 

8. Simon Serrano S, Sime W, Abassi Y, Daams R, Massoumi R, Jemaa M. Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma. Sci Rep 2020;10:11997. 

9. Tannous BA, Kerami M, Van der Stoop PM, Kwiatkowski N, Wang J, Zhou W, et al. Effects of the selective MPS1 inhibitor MPS1-IN-3 on glioblastoma sensitivity to antimitotic drugs. J Natl Cancer Inst 2013;105:1322–31. 

10. Liu L, Kimball S, Liu H, Holowatyj A, Yang ZQ. Genetic alterations of histone lysine methyltransferases and their significance in breast cancer. Oncotarget 2015;6:2466–82. 

11. Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, et al. Targeting protein modifications in metabolic diseases: Molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023;8:220. 

12. He J, Xu T, Zhao F, Guo J, Hu Q. SETD2-H3K36ME3: An important bridge between the environment and tumors. Front Genet 2023;14:1204463. 

13. Viaene AN, Santi M, Rosenbaum J, Li MM, Surrey LF, Nasrallah MP. SETD2 mutations in primary central nervous system tumors. Acta Neuropathol Commun 2018;6:123. 

14. Nomura M, Mukasa A, Nagae G, Yamamoto S, Tatsuno K, Ueda H, et al. Distinct molecular profile of diffuse cerebellar gliomas. Acta Neuropathol 2017;134:941–56. 

15. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013;155:462–77. 

16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–504. 

17. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, et al. GeneMANIA Cytoscape plugin: Fast gene function predictions on the desktop. Bioinformatics 2010;26:2927–8. 

18. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25:1091–3. 

19. Kawaguchi A, Yajima N, Tsuchiya N, Homma J, Sano M, Natsumeda M, et al. Gene expression signature-based prognostic risk score in patients with glioblastoma. Cancer Sci 2013;104:1205–10. 

20. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, et al. Integrated molecular genetic profiling of pediatric highgrade gliomas reveals key differences with the adult disease. J Clin Oncol 2010;28:3061–8. 

21. Erdem-Eraslan L, Gravendeel LA, de Rooi J, Eilers PH, Idbaih A, Spliet WG, et al. Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: A report from EORTC study 26951. J Clin Oncol 2013;31:328–36. 

22. Shankavaram U, Maachani UB, Zhao S, Camphausen K, Tandle A. Molecular profiling of MPS1 gene silencing in U251 glioma cell line. Genom Data 2015;6:36–9. 

23. Maachani UB, Tandle A, Shankavaram U, Kramp T, Camphausen K. Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget 2016;7:52912–27. 

24. Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ, et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 2014;7:2006–18. 

25. Alexander BM, Cloughesy TF. Adult glioblastoma. J Clin Oncol 2017;35:2402–9. 

26. Altinoz MA, Topcu G, Hacimuftuoglu A, Ozpinar A, Ozpinar A, Hacker E, et al. Noscapine, a non-addictive opioid and microtubule-ınhibitor in potential treatment of glioblastoma. Neurochem Res 2019;44:1796–806. 

27. Parney IF, Chang SM. Current chemotherapy for glioblastoma. Cancer J 2003;9:149–56. 

28. Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New directions in the therapy of glioblastoma. Cancers (Basel) 2022;14:5377. 

29. Aldaz P, Arozarena I. Tyrosine kinase ınhibitors in adult glioblastoma: An (Un)closed chapter? Cancers (Basel) 2021;13:5799. 

30. Maachani UB, Kramp T, Hanson R, Zhao S, Celiku O, Shankavaram U, et al. Targeting MPS1 enhances radiosensitization of human glioblastoma by modulating DNA repair proteins. Mol Cancer Res 2015;13:852–62. 

31. Suzuki M, Yamamori T, Yasui H, Inanami O. Effect of MPS1 inhibition on genotoxic stress responses in murine tumour cells. Anticancer Res 2016;36:2783–92. 

32. Yu ZC, Huang YF, Shieh SY. Requirement for human Mps1/ TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res 2016;44:1133–50. 

33. Jin N, Lera RF, Yan RE, Guo F, Oxendine K, Horner VL, et al. Chromosomal instability upregulates interferon in acute myeloid leukemia. Genes Chromosomes Cancer 2020;59:627–38. 

34. Ju JQ, Li XH, Pan MH, Xu Y, Xu Y, Sun MH, et al. Mps1 controls spindle assembly, SAC, and DNA repair in the first cleavage of mouse early embryos. J Cell Biochem 2021;122:290–300. 

35. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL- 2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022;12:985363. 

36. Stevens M, Oltean S. Modulation of the apoptosis gene Bcl-x function through alternative splicing. Front Genet 2019;10:804. 

37. Li M, Wang D, He J, Chen L, Li H. Bcl-XL: A multifunctional antiapoptotic protein. Pharmacol Res 2020;151:104547. 

38. Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death Differ 2006;13:1351–9. 

39. Abbas T, Dutta A. p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer 2009;9:400–14. 

40. Krenning L, Feringa FM, Shaltiel IA, van den Berg J, Medema RH. Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol Cell 2014;55:59–72. 

41. Vitiello PF, Staversky RJ, Keng PC, O'Reilly MA. PUMA inactivation protects against oxidative stress through p21/Bcl-XL inhibition of bax death. Free Radic Biol Med 2008;44:367–74. 

42. Wu YC, O'Reilly MA. Bcl-X(L) is the primary mediator of p21 protection against hyperoxia-induced cell death. Exp Lung Res 2011;37:82–91. 

43. Lam UTF, Chen ES. Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Int J Biochem Cell Biol 2022;144:106155. 

44. Molenaar TM, van Leeuwen F. SETD2: From chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022;79:346. 

45. Carvalho S, Vítor AC, Sridhara SC, Martins FB, Raposo AC, Desterro JM, et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. Elife 2014;3:e02482. 

46. Li F, Mao G, Tong D, Huang J, Gu L, Yang W, et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 2013;153:590–600. 

47. Burns DR, Ward JE. Review of attachments for removable partial denture design: 1. Classification and selection. Int J Prosthodont 1990;3:98–102. 

48. Papamichos-Chronakis M, Peterson CL. Chromatin and the genome integrity network. Nat Rev Genet 2013;14:62–75. 

49. Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining genome ıntegrity: protein kinases and phosphatases orchestrate the balancing act of DNA double-strand breaks repair in cancer. Int J Mol Sci 2023;24:10212. 

50. Sinha D, Duijf PHG, Khanna KK. Mitotic slippage: An old tale with a new twist. Cell Cycle 2019;18:7–15. 

51. Jemaà M, Manic G, Lledo G, Lissa D, Reynes C, Morin N, et al. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget 2016;7:885–901. 

52. Jemaà M, Galluzzi L, Kepp O, Boilève A, Lissa D, Senovilla L, et al. Preferential killing of p53-deficient cancer cells by reversine. Cell Cycle 2012;11:2149–58. 

53. Jemaà M, Vitale I, Kepp O, Berardinelli F, Galluzzi L, Senovilla L, et al. Selective killing of p53-deficient cancer cells by SP600125. EMBO Mol Med 2012;4:500–14. 

54. Jemaa M, Galluzzi L, Kepp O, Senovilla L, Brands M, Boemer U, et al. Characterization of novel MPS1 inhibitors with preclinical anticancer activity. Cell Death Differ 2013;20:1532–45. 

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing