AccScience Publishing / EJMO / Volume 8 / Issue 3 / DOI: 10.14744/ejmo.2024.20856
RESEARCH ARTICLE

STK11 is a Potential Therapeutic and Prognostic Biomarker and Correlates with Immune Infiltrates in Non-Small Cell Lung Cancer

Imane Bensalim1,4 Youssra Boustany1,3 Abdelmoiz El Faqer1 Abdelilah Laraqui2 Bouchra Belkadi1
Show Less
1 Microbiology and Molecular Biology Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
2 Sequencing Unit, Virology Laboratory, Center for Virology, Infectious and Tropical Diseases, Mohamed V Military Training Hospital, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
3 Biosafety and Research Laboratory, Mohamed V Military Training Hospital, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
4 Mohammed VI Center for Research and Innovation (CM6), Mohammed VI university of Sciences and Health (UM6SS), Casablanca, Morocco
EJMO 2024, 8(3), 358–370; https://doi.org/10.14744/ejmo.2024.20856
Submitted: 3 April 2024 | Accepted: 4 June 2024 | Published: 10 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: This study aims to elucidate the role of Serine Threonine Kinase 11 (STK11) in non-small cell lung cancer (NSCLC), particularly its involvement in resistance to anti-PD-1 monoclonal antibody therapy in KRAS-mutated NSCLC. The study also explores the implications of STK11 alterations in prognosis, protein interactions, immune cell involvement, and drug sensitivity.

Methods: Comprehensive bioinformatic analyses were conducted to evaluate STK11 expression levels and mutational profiles in various NSCLC subtypes. The study correlated these findings with clinicopathological characteristics and assessed immune cell infiltration, immune microenvironment, and potential therapeutic options. Molecular docking analysis was also performed to investigate interactions with various inhibitors.

Results: The results reveal elevated STK11 expression across NSCLC, with a mutation rate of 14%, and an association with favorable prognosis. STK11 expression was found to correlate with immune cell infiltration and a cold immune microenvironment characterized by lower immune activity. Nutlin-3a (-) was identified as a potential therapeutic option for NSCLC cases with STK11 mutations. Molecular docking analysis provided insights into interactions with various inhibitors, offering perspectives for personalized therapeutic strategies.

Conclusion: This study underscores STK11 as a dual-faceted prognostic and therapeutic biomarker in NSCLC. The findings highlight the complex interplay between STK11 and immune activity, offering innovative avenues for tailored treatment approaches in NSCLC. 

 
Keywords
Non-small cell lung cancer
STK11
immune cell infiltration
prognostic biomarker
therapeutic biomarker
Immunotherapy resistance
Conflict of interest
None declared.
References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49. 

2. Heuvers ME, Hegmans JP, Stricker BH, Aerts JG. Improving lung cancer survival; Time to move on. BMC Pulm Med 2012;12:77. 

3. Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin N Am 2016;25:447–68. 

4. Chae HD, Jeon CH. Peutz-Jeghers syndrome with germline mutation of STK11. Ann Surg Treat Res 2014;86:325–30. 

5. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 2004;101:3329–35. 

6. Pons-Tostivint E, Lugat A, Fontenau JF, Denis MG, Bennouna J. STK11/LKB1 modulation of the immune response in lung cancer: From biology to therapeutic impact. Cells 2021;10:3129. 

7. Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab 2021;44:101131. 

8. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015;5:860–77. 

9. Malhotra J, Ryan B, Patel M, Chan N, Guo Y, Aisner J, et al. Clinical outcomes and immune phenotypes associated with STK11 co-occurring mutations in non-small cell lung cancer. J Thorac Dis 2022;14:1772–83. 

10. Shire NJ, Klein AB, Golozar A, Collins JM, Fraeman KH, Nordstrom BL, et al. STK11 (LKB1) mutations in metastatic NSCLC: Prognostic value in the real world. PLoS One 2020;15:e0238358. 

11. Wang D, Qian X, Du YCN, Sanchez-Solana B, Chen K, Kanigcherla M, et al. cProSite: A web based interactive platform for online proteomics, phosphoproteomics, and genomics data analysis. Available at: https://www.biorxiv.org/content/10.1101/2023.06.10.543932v2.full. Accessed Aug 15, 2024. 

12. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022;25:18–27. 

13. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2:401–4. 

14. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:pl1. 

15. Győrffy B, Surowiak P, Budczies J, Lánczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013;8:e82241. 

16. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 2017;77:e108–10. 

17. Nagy Á, Győrffy B. muTarget: A platform linking gene expression changes and mutation status in solid tumors. Int J Cancer 2021;148:502–11. 

18. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021;49:D605–12. 

19. Pan-Montojo F, Reichmann H. Considerations on the role of environmental toxins in idiopathic Parkinson's disease pathophysiology. Transl Neurodegener 2014;3:10. 

20. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013;41:D955–61. 

21. Laderian B, Mundi P, Fojo T, E Bates S. Emerging therapeutic implications of STK11 mutation: Case series. Oncologist 2020;25:733–7. 

22. Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 2018;8:822–35. 

23. Marinelli D, Mazzotta M, Scalera S, Terrenato I, Sperati F, D'Ambrosio L, et al. KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden. Ann Oncol 2020;31:1746–54. 

24. Alkaf A, Al-Jafari A, Wani TA, Alqattan S, Zargar S. Expression of STK11 gene and its promoter activity in MCF control and cancer cells. 3 Biotech 2017;7:362. 

25. Sirithawat P, Jusakul A, Kongpetch S, Thanee M, Srichanchara P, Panjaroensak S, et al. Alteration of STK11 expression associated with cholangiocarcinoma progression. In Vivo 2023;37:1638–48. 

26. Momcilovic M, Shackelford DB. Targeting LKB1 in cancer - Exposing and exploiting vulnerabilities. Br J Cancer 2015;113:574–84. 

27. Krishnamurthy N, Goodman AM, Barkauskas DA, Kurzrock R. STK11 alterations in the pan-cancer setting: Prognostic and therapeutic implications. Eur J Cancer 2021;148:215–29. 

28. Mograbi B, Heeke S, Hofman P. The importance of STK11/LKB1 assessment in non-small cell lung carcinomas. Diagnostics (Basel) 2021;11:196. 

29. Biton J, Mansuet-Lupo A, Pécuchet N, Alifano M, Ouakrim H, Arrondeau J, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin Cancer Res 2018;24:5710–23. 

30. Melssen MM, Sheybani ND, Leick KM, Slingluff CL Jr. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023;11:e006401. 

31. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2018;175:998–1013.e20. 

32. Li Z, Ding B, Xu J, Mao K, Zhang P, Xue Q. Relevance of STK11 mutations regarding immune cell infiltration, drug sensitivity, and cellular processes in lung adenocarcinoma. Front Oncol 2020;10:580027. 

33. Amicizia D, Piazza MF, Marchini F, Astengo M, Grammatico F, Battaglini A, et al. Systematic review of lung cancer screening: advancements and strategies for implementation. Healthcare (Basel) 2023;11:2085. 

34. Sumbly V, Landry I. Unraveling the role of STK11/LKB1 in nonsmall cell lung cancer. Cureus 2022;14:e21078. 

35. PubChem. nutlin-3A. Available at: https://pubchem.ncbi.nlm. nih.gov/compound/11433190. Accessed Aug 15, 2024. 

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing