AccScience Publishing / EJMO / Volume 8 / Issue 2 / DOI: 10.14744/ejmo.2024.61923
RESEARCH ARTICLE

Effect of Losartan on Cell Proliferation and Reactive Oxygen Species Scavenging in Gastric Cancer Cell Lines

Maedeh Raei1 Mohadeseh Ahmadi1 Saeed Abrotan2 Alireza Razavi3 Akbar Hedayatizadeh-Omran1 Amir Shamshirian1 Keyvan Heydari1 Majid Saeedi4,5 Reza Alizadeh-Navaei1
Show Less
1 Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
2 Department of Cardiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
3 Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
4 Pharmaceutical Sciences Research Center, Haemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
5 Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
EJMO 2024, 8(2), 135–140; https://doi.org/10.14744/ejmo.2024.61923
Submitted: 23 May 2024 | Accepted: 28 July 2024 | Published: 10 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: The study aims to investigate the mechanisms underlying the anti-cancer effects of losartan in gastric
cancer cell line.

Methods: In this experimental investigation, MKN-45 cells were cultivated in RPMI-1640 medium supplemented with 10% fetal bovin serum and 100 μg/ml streptomycinin, and 100 IU/ml penicillin, and maintained under controlled conditions of temperature and CO2. Following washing with PBS, all cells were detached using trypsin, centrifuged and then 8×103 cells re-plated onto 96- well plates. Then various concentrations of Losartan (1000, 2000 and 3000 µM) and 5-fluorouracil (12.5 µM) were added to each well in triple therapy. Anti-proliferative effects of this treatment were evaluated through MTT assay and ROS detection by ROS-sensitive fluorescence indicator after 24 hours.

Results: Losartan greatly enhanced the ant-proliferative effect at all tested doses, especially with an IC50 of about 3000 µM in contrast to other groups (P<0.01). Also, cell ROS content due to losartan treatment was significantly reduced compared to untreated group (p<0.05), and the cells treated with Losartan (3000 µM) had considerably lower fluorescence than other groups (p=0.000).

Conclusion: In conclusion, this study demonstrated that the various concentration of losartan treatment reduced the viability of MKN-45 gastric cancer cell proliferation, concomitant with a notable decrease in ROS production.

Keywords
Gastric cancer
Losartan
Renin-angiotensin system
MTT
MKN-45 cell line.
Conflict of interest
None declared.
References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359-86.
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016;66(2):115– 32.
3. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet 2020;396(10251):635–48.
4. Lesogor A, Cohn JN, Latini R, Tognoni G, Krum H, Massie B, et al. Interaction between baseline and early worsening of renal function and efficacy of renin-angiotensin-aldosterone system blockade in patients with heart failure: insights from the Val-HeFT study. Eur J Heart Fail 2013;15(11):1236–44.
5. Li P, Sun HJ, Cui BP, Zhou YB, Han Y. Angiotensin-(1-7) in the rostral ventrolateral medulla modulates enhanced cardiac sympathetic afferent reflex and sympathetic activation in renovascular hypertensive rats. Hypertension 2013;61(4):820– 27.
6. Smith GR, Missailidis S. Cancer, inflammation and the AT1 and AT2 receptors. J Inflamm (Lond) 2004;1(1):3.
7. Hashemzehi M, Rahmani F, Khoshakhlagh M, Avan A, Asgharzadeh F, Barneh F, et al. Angiotensin receptor blocker Losartan inhibits tumor growth of colorectal cancer. EXCLI J 2021;20:506–21.
8. Kinoshita J, Fushida S, Harada S, Yagi Y, Fujita H, Kinami S, et al. Local angiotensin II-generation in human gastric cancer: Correlation with tumor progression through the activation of ERK1/2, NF-kappaB and survivin. Int J Oncol 2009;34(6):1573– 82.
9. Huang W, Wu YL, Zhong J, Jiang FX, Tian XL, Yu LF. Angiotensin II type 1 receptor antagonist suppress angiogenesis and growth of gastric cancer xenografts. Dig Dis Sci 2008;53(5):1206–10.
10. Röcken C, Röhl FW, Diebler E, Lendeckel U, Pross M, Carl-McGrath S, et al. The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiol Biomarkers Prev 2007;16(6):1206–12.
11. Carl-McGrath S, Ebert MP, Lendeckel U, Röcken C. Expression of the local angiotensin II system in gastric cancer may facilitate lymphatic invasion and nodal spread. Cancer Biol Ther 2007;6(8):1218–26.
12. Piatkowska H, Pokrzywnicki W, Zelechowski M. Losartan: angiotensin II type 1 receptor antagonist. Wiad Lek [Article in Polish] 1999;52(1-2):49–55.
13. Regan DP, Coy JW, Chahal KK, Chow L, Kurihara JN, Guth AM, et al. The angiotensin receptor blocker losartan suppresses growth of pulmonary metastases via AT1R-independent inhibition of CCR2 signaling and monocyte recruitment. J Immunol 2019;202(10):3087–102.
14. Lin YT, Wang HC, Tsai MH, Su YY, Yang MY, Chien CY. Angiotensin II receptor blockers valsartan and losartan improve survival rate clinically and suppress tumor growth via apoptosis related to PI3K/AKT signaling in nasopharyngeal carcinoma. Cancer 2021;127(10):1606–19.
15. Busby J, McMenamin Ú, Spence A, Johnston BT, Hughes C, Cardwell CR. Angiotensin receptor blocker use and gastro-oesophageal cancer survival: A population-based cohort study. Aliment Pharmacol Ther 2018;47(2):279–88.
16. Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23(1):254.
17. Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 1999;49(2):91– 102.
18. Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 2011;7(8):504–11.
19. Samie KA, Dayer D, Eshkiki ZS. Human colon cancer HT29 cell line treatment with high-dose L-ascorbic acid results to reduced angiogenic proteins expression and elevated proapoptotic proteins expression. Curr Mol Med 2023;23(5):470– 78.
20. Tawfik E, Ahamed M, Almalik A, Alfaqeeh M, Alshamsan A. Prolonged exposure of colon cancer cells to 5-fluorouracil nanoparticles improves its anticancer activity. Saudi Pharm J 2017;25(2):206–13.
21. Naghashpour M, Dayer D, Karami H, Naghashpour M, Moghadam MT, Haeri SMJ, et al. Evaluating the magnolol anticancer potential in MKN-45 gastric cancer cells. Medicina (Kaunas) 2023;59(2):286.
22. Ahmadi M, Hedayatizadeh-Omran A, Alizadeh-Navaei R, Saeedi M, Zaboli E, Amjadi O, et al. Effects of vitamin E on doxorubicin cytotoxicity in human breast cancer cells in vitro. Asian Pac J Cancer Prev 2022;23(1):201–5.
23. Ager EI, Neo J, Christophi C. The renin–angiotensin system and malignancy. Carcinogenesis 2008;29(9):1675–84.
24. Suganuma T, Ino K, Shibata K, Kajiyama H, Nagasaka T, Mizutani S, et al. Functional expression of the angiotensin II type1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res 2005;11(7):2686–94.
25. Juillerat-Jeanneret L, Celerier J, Chapuis Bernasconi C, Nguyen G, Wostl W, Maerki H, et al. Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer 2004;90(5):1059–68.
26. Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun 2002;294(2):441–47.
27. Masamune A, Hamada S, Kikuta K, Takikawa T, Miura S, Nakano E, et al. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand J Gastroenterol 2013;48(5):602–9.
28. Okazaki M, Fushida S, Harada S, Tsukada T, Kinoshita J, Oyama K, et al. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer Lett 2014;355(1):46–53.
29. Valuckaite V, Ruderman S, Almoghrabi A, Hart J, Abdyrakov A, Roy HK, et al. 911 a novel use of angiotensin II Receptor Blocker (ARB) losartan to inhibit AOM induced tumorigenesis and neoangiogenesis in experimental colon cancer. Gastroenterology 2015;148(4):S-172.
30. Neo JH, Malcontenti-Wilson C, Muralidharan V, Christophi C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J Gastroenterol Hepatol 2007;22(4):577–84.
31. Carl-McGrath S, Ebert MP, Lendeckel U, Röcken C. Expression of the local angiotensin II system in gastric cancer may facilitate lymphatic invasion and nodal spread. Cancer Biol Ther 2007;6(8):1229–37.
32. Sugimoto M, Ohno T, Yamaoka Y. Expression of angiotensin II type 1 and type 2 receptor mRNAs in the gastric mucosa of helicobacter pylori-infected mongolian gerbils. J Gastroenterol 2011;46:1177–86.
33. Kinoshita J, Fushida S, Harada S, Yagi Y, Fujita H, Kinami S, et al. Local angiotensin II-generation in human gastric cancer: Correlation with tumor progression through the activation of ERK1/2, NF-κB and survivin. Int J Oncol 2009;34(6):1573–82.
34. Wang L, Cai SR, Zhang CH, He YL, Zhan WH, Wu H, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers on lymphangiogenesis of gastric cancer in a nude mouse model. Chin Med J 2008;121(21):2167–71.
35. Huang W, Wu YL, Zhong J, Jiang FX, Tian XL, Yu LF. Angiotensin II type 1 receptor antagonist suppress angiogenesis and growth of gastric cancer xenografts. Dig Dis Sci 2008;53:1206– 10.
36. Huang MM, Guo AB, Sun JF, Chen XL, Yin ZY. Angiotensin II promotes the progression of human gastric cancer. Mol Med Rep 2014;9(3):1056–60.
37. Woo Y, Jung YJ. Angiotensin II receptor blockers induce autophagy in prostate cancer cells. Oncol Lett 2017;13(5):3579– 85.
38. Pinter M, Jain RK. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci Transl Med 2017;9(410):eaan5616.
39. Ahmadian E, Eftekhari A, Fard JK, Babaei H, Nayebi AM, Mohammadnejad D, et al. In vitro and in vivo evaluation of the mechanisms of citalopram-induced hepatotoxicity. Arch Pharm Res 2017;40:1296–313.
40. Eftekhari A, Ahmadian E, Panahi-Azar V, Hosseini H, Tabibiazar M, Maleki Dizaj S. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: In vitro/in vivo studies. Artif Cells Nanomed Biotechnol 2018;46(2):411–20.
41. Ahmadian E, Khosroushahi AY, Eftekhari A, Farajnia S, Babaei H, Eghbal MA. Novel angiotensin receptor blocker, azilsartan induces oxidative stress and NFkB-mediated apoptosis in hepatocellular carcinoma cell line HepG2. Biomed Pharmacother 2018;99:939–46.
42. Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci 2021;112(10):3945–52.
43. Yin T, Zhao ZB, Guo J, Wang T, Yang JB, Wang C, et al. Aurora A inhibition eliminates myeloid cell–mediated immunosuppression and enhances the efficacy of anti–PD-L1 therapy in breast cancer. Cancer Res 2019;79(13):3431–44.

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing