AccScience Publishing / EJMO / Volume 8 / Issue 2 / DOI: 10.14744/ejmo.2024.43877
RESEARCH ARTICLE

FHL2 Determines Poor Outcomes and Responsiveness of Immunotherapy Plus Tyrosine Kinase Inhibition in Metastatic Renal Cell Carcinoma

Xianglai Xu1,2 Jinglai Lin1,2 Yanjun Zhu2 Jiajun Wang2 Jianming Guo1,2
Show Less
1 Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
2 Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
3 Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
EJMO 2024, 8(2), 216–224; https://doi.org/10.14744/ejmo.2024.43877
Submitted: 25 April 2024 | Accepted: 30 May 2024 | Published: 10 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: Immunotherapy plus a tyrosine kinase inhibitor (IO+TKI) is now the first line therapy for metastatic renal cell carcinoma (mRCC). Nevertheless, IO+TKI treatment's moderate response rate limited the treatment selection for mRCC patients without a useful biomarker in clinical practice.

Methods: Cohorts from our institution and from a clinical study were included (ZS-MRCC and JAVELIN Renal 101). RNA expressions were identified by sequencing. The immune infiltrate and tumor microenvironment were evaluated by flow cytometry and immunohistochemistry.

Results: Participants with high-FHL2 had a lower rate of objective response and a higher non-response rate. Longer PFS was identified in ZS-MRCC and JAVELIN Renal 101 cohorts. In the group with high FHL2, the quantity of tumorinfiltrating lymphocytes was enhanced; however, CD8+ T cells demonstrated an exhaustion phenotype. Incorporating FHL2 expression and TME markers, a machine learning model was constructed using random forest.

Conclusion: There was a strong connection between a high level of FHL2 and immunosuppression, in addition to a
response to IO+TKI treatment. Additionally, there was a connection between T-cell malfunction. The expression of FHL2
was a prognostic factor in mRCC therapy, and the FHL2-based RFscore may serve as a potential biomarker to distinguish an ideal strategy between TKI monotherapy and IO+TKI.

Keywords
Renal cell carcinoma
FHL2
immune checkpoint inhibition plus tyrosine kinase inhibition
t cell dysfunction
Conflict of interest
None declared.
References

1. Geynisman DM, Maranchie JK, Ball MW, Bratslavsky G, Singer EA. A 25 year perspective on the evolution and advances in an understanding of the biology, evaluation and treatment of kidney cancer. Urol Oncol 2021;39(9):548−60.
2. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial. Lancet 2011;378(9807):1931−9.
3. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1116−27.
4. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1103−15.
5. Motzer R, Alekseev B, Rha SY, Porta C, Eto M, Powles T, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med 2021;384(14):1289−300.
6. Heng DY, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: A population-based study. Lancet Oncol 2013;14(2):141−8.
7. Jin H, Lee K, Kim YH, Oh HK, Maeng YI, Kim TH, et al. Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells. Oncogene 2016;35(39):5106−18.
8. Sun L, Yu S, Xu H, Zheng Y, Lin J, Wu M, et al. FHL2 interacts with EGFR to promote glioblastoma growth. Oncogene 2018;37(10):1386−98.
9. Johannessen M, Moller S, Hansen T, Moens U, Van Ghelue M. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol Life Sci 2006;63(3):268−84.
10. Dahan J, Nouët Y, Jouvion G, Levillayer F, Adib-Conquy M, Cassard-Doulcier AM, et al. LIM-only protein FHL2 activates NF-kappaB signaling in the control of liver regeneration and hepatocarcinogenesis. Mol Cell Biol 2013;33(16):3299−308.
11. Boateng LR, Bennin D, De Oliveira S, Huttenlocher A. Mammalian actin-binding protein-1/Hip-55 interacts with FHL2 and negatively regulates cell invasion. J Biol Chem 2016;291(27):13987−98.
12. Huang Z, Li Q, Luo K, Zhang Q, Geng J, Zhou X, et al. miR-340- FHL2 axis inhibits cell growth and metastasis in ovarian cancer. Cell Death Dis 2019;10(5):372.
13. Gao A, Su Z, Shang Z, He C, Miao D, Li X, et al. TAB182 aggravates progression of esophageal squamous cell carcinoma by enhancing beta-catenin nuclear translocation through FHL2 dependent manner. Cell Death Dis 2022;13(10):900.
14. Verset L, Tommelein J, Moles Lopez X, Decaestecker C, Mareel M, Bracke M, et al. Epithelial expression of FHL2 is negatively associated with metastasis-free and overall survival in colorectal cancer. Br J Cancer 2013;109(1):114−20.
15. Li N, Xu L, Zhang J, Liu Y. High level of FHL2 exacerbates the outcome of non-small cell lung cancer (NSCLC) patients and the malignant phenotype in NSCLC cells. Int J Exp Pathol 2022;103(3):90−101.
16. Brun J, Dieudonné FX, Marty C, Müller J, Schüle R, PatiñoGarcía A, et al. FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo. PLoS One 2013;8(1):e55034.
17. Zhang W, Jiang B, Guo Z, Sardet C, Zou B, Lam CS, et al. Fourand-a-half LIM protein 2 promotes invasive potential and epithelial-mesenchymal transition in colon cancer. Carcinogenesis 2010;31(7):1220−9.
18. Wang J, Zhang S, Wang Y, Zhu Y, Xu X, Guo J. Alternative complement pathway signature determines immunosuppression and resistance to immunotherapy plus tyrosine kinase inhibitor combinations in renal cell carcinoma. Urol Oncol 2023;41(1):51.e13-51.e23.
19. Xu X, Wang Y, Chen Z, Zhu Y, Wang J, Guo J. Unfavorable immunotherapy plus tyrosine kinase inhibition outcome of metastatic renal cell carcinoma after radical nephrectomy with increased ADAM9 expression. Immunogenetics 2023;75(2):133−43.
20. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Journal Article; Practice Guideline. Eur J Cancer 2009;45(2):228−47.
21. Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: Biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat Med 2020;26(11):1733−41.
22. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 2020;38(6):675−8.
23. Wang J, Liu L, Bai Q, Ou C, Xiong Y, Qu Y, et al. Tumor-infiltrating neutrophils predict therapeutic benefit of tyrosine kinase inhibitors in metastatic renal cell carcinoma. Oncoimmunology 2019;8(1):e1515611.
24. Han W, Wu Z, Zhao Y, Meng Y, Si Y, Yang J, et al. FHL2 interacts with and acts as a functional repressor of Id2 in human neuroblastoma cells. Nucleic Acids Res 2009;37(12):3996−4009.
25. Hou Y, Wang X, Li L, Fan R, Chen J, Zhu T, et al. FHL2 regulates hematopoietic stem cell functions under stress conditions. Leukemia 2015;29(3):615−24.
26. Fu C, Liang X, Cui W, Ober-Blöbaum JL, Vazzana J, Shrikant PA, et al. β-Catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci U S A 2015;112(9):2823−8.
27. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic betacatenin signalling prevents anti-tumour immunity. Nature 2015;523(7559):231−5.
28. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, et al. Wnt/beta-catenin pathway: Modulating anticancer immune response. J Hematol Oncol 2017;10(1):101.
29. Zhou Y, Xu J, Luo H, Meng X, Chen M, Zhu D. Wnt signaling pathway in cancer immunotherapy. Cancer Lett 2022;525:84−96.
30. Wang B, Tian T, Kalland KH, Ke X, Qu Y. Targeting wnt/betacatenin signaling for cancer immunotherapy. Trends Pharmacol Sci 2018;39(7):648−58.
31. Galluzzi L, Spranger S, Fuchs E, Lopez-Soto A. WNT signaling in cancer immunosurveillance. Trends Cell Biol 2019;29(1):44−65.
32. Gattinoni L, Ji Y, Restifo NP. Wnt/beta-catenin signaling in Tcell immunity and cancer immunotherapy. Clin Cancer Res 2010;16(19):4695−701.

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing