AccScience Publishing / EJMO / Volume 8 / Issue 2 / DOI: 10.14744/ejmo.2024.27775
RESEARCH ARTICLE

Unveiling the Prognostic Significance of Long Non-Coding RNA (lncRNA) PCAT1 in Invasive Breast Carcinoma

Brototi Chakrabarty1 Kashifa Afrin2 Sumaiya Islam3 Neloy Kundu2 Md Afjalus Siraj4
Show Less
1 Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
2 Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
3 Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
4 Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, USA
EJMO 2024, 8(2), 173–184; https://doi.org/10.14744/ejmo.2024.27775
Submitted: 11 April 2024 | Accepted: 15 May 2024 | Published: 10 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objective: Prostate cancer-associated transcript 1 (PCAT1) is a long non-coding RNA (lncRNA), composed of more than 200 nucleotides which expression controls the proliferation, migration, invasion, and metastasis of different cancers. In this current study, we have analyzed the possible role of PCAT1 as a prognostic biomarker for invasive breast cancer (IBC).

Method: Online web genomic portal cBioportal, GEPIA, PhosphoSitePlus, IGV, GENEMENIA, Ensembl, and ENCORI were used for this analysis.

Result: Our analysis demonstrated that PCAT1 expression was higher in BRCA-mutated BC patients cells compared to normal cells (fold change ~ 1.56). Over time, patients with greater PCAT1 expression had a significantly lower overall survival rate (p- 5.539e-5). Besides, there was significant alteration of PCAT1 in PR (p- 1.672e-6), HER2 (p- 3.920e-4) negative, and ER (p- 3.190e-6) positive primary IBC samples. In addition, a correlation was also found with the alteration of PCAT1 and the histologic grade of the IBC (p- >10-10). Moreover, the co-occurrence of PCAT1 with the oncogenes of CASC family, i.e., CASC8, CASC11, and CASC19 in IBC was identified. The PCAT1, CASC8, CASC11, and CASC19 have genomic location, named chr8q24, which contains the loci responsible for different cancers including BC.

Conclusion: These findings indicate the possible association of PCAT1 expression with poor clinical outcomes and co-occurrence with previously established oncogenes as well as biomarkers suggests its usefulness as a prognostic biomarker in IBC.

Keywords
Prostate cancer-associated transcript 1
long non-coding RNA
invasive breast carcinoma
estrogen receptor
cancer susceptibility candidate
Conflict of interest
None declared.
References

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021;71:7−33.
2. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018;5:77−106.
3. American Cancer Society. What is breast cancer? Available at:https://www.cancer.org/cancer/types/breast-cancer/about/ what-is-breast-cancer.html. Accessed May 23, 2024.
4. Breastcancer.org. Your guide to the breast cancer pathology report. Available at: https://sharedhealthmb.ca/files/breastcancer-path-report-guide.pdf. Accessed May 5, 2024.
5. Masjedi S, Zwiebel LJ, Giorgio TD. Olfactory receptor gene abundance in invasive breast carcinoma. Sci Rep 2019;9:13736.
6. Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin Cancer Biol 2018;52:56−73.
7. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010;5:463−6.
8. Duffy MJ, Walsh S, McDermott EW, Crown J. Biomarkers in Breast cancer: Where are we and where are we going? Adv Clin Chem 2015;71:1−23.
9. Pekmezci M, Szpaderska A, Osipo C, Erşahin Ç. Evaluation of biomarkers in multifocal/multicentric invasive breast carcinomas. Int J Surg Pathol 2013;21:126−32.
10. Suhane S, Berel D, Ramanujan VK. Biomarker signatures of mitochondrial NDUFS3 in invasive breast carcinoma. Biochem Biophys Res Commun 2011;412:590−5.
11. Cabarcas-Petroski S, Meneses PI, Schramm L. A meta-analysis of BRF2 as a prognostic biomarker in invasive breast carcinoma. BMC Cancer 2020;20:1093.
12. Sakamoto Y, Kitajima Y, Edakuni G, Hamamoto T, Miyazaki K. Combined evaluation of NGF and p75NGFR expression is a biomarker for predicting prognosis in human invasive ductal breast carcinoma. Oncol Rep 2001;8:973−80.
13. Yang H, Yu J, Wang L, Ding D, Zhang L, Chu C, et al. miR-320a is an independent prognostic biomarker for invasive breast cancer. Oncol Lett 2014;8:1043−50.
14. Zhou J, Guo Y, Huo Z, Xing Y, Fang J, Ma G, et al. Identification of therapeutic targets and prognostic biomarkers from the hnRNP family in invasive breast carcinoma. Aging (Albany NY) 2021;13:4503−21.
15. Huang L, Wang Y, Chen J, Wang Y, Zhao Y, Wang Y, et al. Long noncoding RNA PCAT1, a novel serum-based biomarker, enhances cell growth by sponging miR-326 in oesophageal squamous cell carcinoma. Cell Death Dis 2019;10:513.
16. Cho. The functions and features of intergenic lncRNAs. Physiol Behav. 2016;176(1):100–106.
17. Derrien T, Guigó R, Johnson R. The long non-coding RNAs: A new (p)layer in the "dark matter". Front Genet 2012;2:107.
18. De Leeneer K, Claes K. Non coding RNA molecules as potential biomarkers in breast cancer. Adv Exp Med Biol 2015;867:263−75.
19. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009;136:629−41.
20. Hauptman N, Glavač D. Long non-coding RNA in cancer. Int J Mol Sci 2013;14:4655−69.
21. Abdollahzadeh R, Mansoori Y, Azarnezhad A, Daraei A, Pak- nahad S, Mehrabi S, et al. Expression and clinicopathological significance of AOC4P, PRNCR1, and PCAT1 lncRNAs in breast cancer. Pathol Res Pract 2020;216:153131.
22. Yang Z, Zhao S, Zhou X, Zhao H, Jiang X. PCAT-1: A pivotal oncogenic long non-coding RNA in human cancers. Biomed Pharmacother 2019;110:493−9.
23. Wang J, Chen X, Hu H, Yao M, Song Y, Yang A, et al. PCAT-1 facilitates breast cancer progression via binding to RACK1 and enhancing oxygen-independent stability of HIF-1α. Mol Ther Nucleic Acids 2021;24:310−24.
24. Yan TH, Yang H, Jiang JH, Lu SW, Peng CX, Que HX, et al. Prognostic significance of long non-coding RNA PCAT-1 expression in human hepatocellular carcinoma. Int J Clin Exp Pathol 2015;8:4126−31.
25. Wen J, Xu J, Sun Q, Xing C, Yin W. Upregulation of long non coding RNA PCAT-1 contributes to cell proliferation, migration and apoptosis in hepatocellular carcinoma. Mol Med Rep 2016;13:4481−6.
26. Zhang X, Zhang Y, Mao Y, Ma X. The lncRNA PCAT1 is correlated with poor prognosis and promotes cell proliferation, invasion, migration and EMT in osteosarcoma. Onco Targets Ther 2018 Jan 31;11:629−38.
27. Ge X, Chen Y, Liao X, Liu D, Li F, Ruan H, et al. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol 2013;30:588.
28. Li L, Wang YY, Mou XZ, Ye ZY, Zhao ZS. Up-regulation of long noncoding RNA M26317 correlates with tumor progression and poor prognosis in gastric cancer. Hum Pathol. 2018;78:44−53.
29. Bi M, Yu H, Huang B, Tang C. Long non-coding RNA PCAT1 over-expression promotes proliferation and metastasis in gastric cancer cells through regulating CDKN1A. Gene 2017;626:337−43.
30. Shi WH, Wu QQ, Li SQ, Yang TX, Liu ZH, Tong YS, et al. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma. Tumour Biol 2015;36:2501−7.
31. Zhen Q, Gao LN, Wang RF, Chu WW, Zhang YX, Zhao XJ, et al. LncRNA PCAT-1 promotes tumour growth and chemoresistance of oesophageal cancer to cisplatin. Cell Biochem Funct 2018;36:27−33.
32. Huang J, Deng G, Liu T, Chen W, Zhou Y. Long noncoding RNA PCAT-1 acts as an oncogene in osteosarcoma by reducing p21 levels. Biochem Biophys Res Commun 2018;495:2622−9.
33. Zhang D, Cao J, Zhong Q, Zeng L, Cai C, Lei L, et al. Long noncoding RNA PCAT-1 promotes invasion and metastasis via the miR-129-5p-HMGB1 signaling pathway in hepatocellular carcinoma. Biomed Pharmacother 2017;95:1187−93.
34. Zhao B, Hou X, Zhan H. Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in non-small cell lung cancer cells. Int J Clin Exp Med 2015;8:18482−7.
35. Liu L, Liu Y, Zhuang C, Xu W, Fu X, Lv Z, et al. Inducing cell growth arrest and apoptosis by silencing long non-coding RNA PCAT1 in human bladder cancer. Tumour Biol 2015;36:7685−9.
36. Ma TT, Zhou LQ, Xia JH, Shen Y, Yan Y, Zhu RH. LncRNA PCAT-1 regulates the proliferation, metastasis and invasion of cervical cancer cells. Eur Rev Med Pharmacol Sci 2018;22:1907−13.
37. Shen X, Zhang Y, Wu X, Guo Y, Shi W, Qi J, et al. Upregulated lncRNA-PCAT1 is closely related to clinical diagnosis of multiple myeloma as a predictive biomarker in serum. Cancer Biomark 2017;18:257−63.
38. Chang L, Jia DL, Cao CS, Wei H, Li ZQ. LncRNA PCAT-1 promotes the progression of osteosarcoma via miR-508-3p/ZEB1 axis. Eur Rev Med Pharmacol Sci 2021;25:2517−27.
39. Sun D, Zhao Y, Wang W, Guan C, Hu Z, Liu L, et al. PCAT1 induced by transcription factor YY1 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-216a-3p to up-regulate oncogene BCL3. Biol Chem 2020;402(2):207−19.
40. Wang R, Zheng B, Liu H, Wan X. Long non-coding RNA PCAT1 drives clear cell renal cell carcinoma by upregulating YAP via sponging miR-656 and miR-539. Cell Cycle 2020;19:1122−31.
41. Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 2020;183:1436−56. 
42. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 2016;7:11479.
43. Parry M. Introducing the metastatic breast cancer project: A novel patient-partnered initiative to accelerate understanding of MBC. ESMO Open 2018;3:e000452.
44. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61−70.
45. Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria JC, et al. Mutational profile of metastatic breast cancers: A retrospective analysis. PLoS Med 2016;13:e1002201.
46. Pareja F, Brown DN, Lee JY, Da Cruz Paula A, Selenica P, Bi R, et al. Whole-exome sequencing analysis of the progression from non-low-grade ductal carcinoma in situ to invasive ductal carcinoma. Clin Cancer Res 2020;26:3682−93.
47. Kan Z, Ding Y, Kim J, Jung HH, Chung W, Lal S, et al. Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nat Commun 2018;9:1725.
48. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 2015;518:422−6.
49. Nixon MJ, Formisano L, Mayer IA, Estrada MV, González-Ericsson PI, Isakoff SJ, et al. PIK3CA and MAP3K1 alterations imply luminal A status and are associated with clinical benefit from pan-PI3K inhibitor buparlisib and letrozole in ER+ metastatic breast cancer. NPJ Breast Cancer 2019;5:31.
50. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triplenegative breast cancers. Nature 2012;486:395−9.
51. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012;486:405−9.
52. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012;486:400−4.
53. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012;486:346−52.
54. Rueda OM, Sammut SJ, Seoane JA, Chin SF, Caswell-Jin
JL, Callari M, et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature 2019;567:399−404.
55. Zhou Q, Zhang F, He Z, Zuo MZ. E2F2/5/8 serve as potential prognostic biomarkers and targets for human ovarian cancer. Front Oncol 2019;9:161.
56. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol 2011;29:24−6.
57. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res 2020;48:D682–8.
58. Li JH, Liu S, Zhou H, Qu LH, Yang JH. StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014;42:92–7.
59. Ulfa EH. Angiotensin-Converting Enzyme 2 and COVID-19: Patients, comorbidities, and therapies. SELL J 2020;5(1):55.
60. Sang Y, Gu H, Chen Y, Shi Y, Liu C, Lv L, et al. Long non-coding RNA CASC8 polymorphisms are associated with the risk of esophageal cancer in a Chinese population. Thorac Cancer 2020;11:2852−7.
61. Ma G, Gu D, Lv C, Chu H, Xu Z, Tong N, et al. Genetic variant in 8q24 is associated with prognosis for gastric cancer in a Chinese population. J Gastroenterol Hepatol 2015;30:689–95.
62. Lin HY, Callan CY, Fang Z, Tung HY, Park JY. Interactions of PVT1 and CASC11 on prostate cancer risk in African Americans. Cancer Epidemiol Biomarkers Prev 2019;28:1067–75.
63. Wang WJ, Guo CA, Li R, Xu ZP, Yu JP, Ye Y, et al. Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging (Albany NY) 2019;11:5829– 47.
64. Ahmadiyeh N, Pomerantz MM, Grisanzio C, Herman P, Jia L, Almendro V, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci U S A 2010;107:9742–6.
65. Sun H, Sun X, Zhang H, Yue A, Sun M. LncRNA-PCAT1 controls the growth, metastasis and drug resistance of human colon cancer cells. J BUON 2020;25:2180−5.
66. Garnis C, Buys TP, Lam WL. Genetic alteration and gene expression modulation during cancer progression. Mol Cancer 2004;3:9.

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing