AccScience Publishing / EJMO / Volume 7 / Issue 4 / DOI: 10.14744/ejmo.2023.16355
REVIEW

MiRNA-433 and Cancers

Jie Tang1 Desheng Ni2 Song Li2
Show Less
1 Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
2 Department of Hepatobilary Pancreatic Gastrointestinal Surgery, JinHua People's Hospital, JinHua, Jinhua, China
EJMO 2023, 7(4), 289–297; https://doi.org/10.14744/ejmo.2023.16355
Submitted: 11 October 2023 | Accepted: 13 November 2023 | Published: 29 December 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Being a carrier of genes encoding post-transcriptional regulatory information, miRNA-433 has a crucial regulatory role in cell growth and development in animals and plants. We found that miRNA-433 is associated with 19 cancers, with its expression significantly downregulated in 17 cancers. MiRNA-433 overexpression can inhibit the proliferation, migration, and invasion of cancer cells. These include cells of cholangiocarcinoma, liver cancer, pancreatic cancer, breast cancer, etc. MiRNA-433 suppresses the expression of this target gene by binding to the specific seed sequence of the downstream target gene Notably, the seed sequences of different downstream target genes that miRNA-433 binds to are the same. In this article, we discuss in detail the mechanism of miRNA-433 in human diseases and provide ideas for further research on its biological functions.

Keywords
Cancer
Human diseases
MiRNAs
MiRNA-433
Conflict of interest
None declared.
References

1. Lee RC, Feinbaum RL, Ambros V. The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843−54.
2. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: Tools for microRNA genomics. Nucleic Acids Res 2008;36:154– 8.
3. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857–66.
4. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007;32:189–97.
5. Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. RNA 2003;9:112–23.
6. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009;136:215–33.
7. Tang J, Chen J, Wang Y, Zhou S. The role of MiRNA-433 in malignant tumors of digestive tract as tumor suppressor. Cancer Rep 2022;5:e1694.
8. Shalgi R, Lieber D, Oren M, Pilpel Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 2007;3:e131.
9. Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and stem-like properties: The complex regulation underlying stemness maintenance and cancer development. Biomolecules 2021;11:1074.
10. Zhao Y, Cong L, Lukiw WJ. Plant and animal microRNAs and their potential for inter-kingdom communication. Cell Mol Neurobiol 2018;38:133–40.
11. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99:15524–9.
12. Wang H, Ke J, Guo Q, Barnabo Nampoukime KP, Yang P, Ma K. Long non-coding RNA CRNDE promotes the proliferation, migration and invasion of hepatocellular carcinoma cells through miR-217/MAPK1 axis. J Cell Mol Med 2018;22:5862– 76.
13. Ma L, Xue HB, Wang F, Shu CM, Zhang JH. MicroRNA-155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 cells. Clin Exp Immunol 2015;181:142–9.
14. Liu J, Xing Y, Rong L. miR-181 regulates cisplatin-resistant non-small cell lung cancer via downregulation of autophagy through the PTEN/PI3K/AKT pathway. Oncol Rep 2018;39:1631–9.
15. Song G, Wang L. MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus. PLoS One 2008;3:e3574.
16. Song G, Wang L. Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma. Nucleic Acids Res 2008;36:5727–35.
17. Wang XC, Ma Y, Meng PS, Han JL, Yu HY, Bi LJ. miR-433 inhibits oral squamous cell carcinoma cell growth and metastasis by targeting HDAC6. Oral Oncol 2015;51:674–82.
18. Liang T, Guo Q, Li L, Cheng Y, Ren C, Zhang G. MicroRNA-433 inhibits migration and invasion of ovarian cancer cells via targeting Notch1. Neoplasma 2016;63:696–704.
19. Cheng H, Yan W. MiR-433 regulates myocardial ischemia reperfusion injury by targeting NDRG4 via the PI3K/Akt pathway. Shock 2020;54:802–9.
20. Guo LH, Li H, Wang F, Yu J, He JS. The tumor suppressor roles of miR-433 and miR-127 in gastric cancer. Int J Mol Sci 2013;14:14171–84.
21. Liang C, Ding J, Yang Y, Deng L, Li X. MicroRNA-433 inhibits cervical cancer progression by directly targeting metadherin to regulate the AKT and β-catenin signalling pathways. Oncol Rep 2017;38:3639–49.
22. Shi Q, Wang Y, Mu Y, Wang X, Fan Q. MiR-433-3p inhibits proliferation and invasion of esophageal squamous cell carcinoma by targeting GRB2. Cell Physiol Biochem 2018;46:2187–96.
23. Zhang J, Guo Y, Ma Y, Wang L, Li W, Zhang M, et al. miR-433- 3p targets AJUBA to inhibit malignant progression of glioma. Neuroimmunomodulation 2022;29:44–54.
24. Weiner-Gorzel K, Dempsey E, Milewska M, McGoldrick A, Toh V, Walsh A, et al. Overexpression of the microRNA miR433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med 2015;4:745–58.
25. Yu J, Zhang W, Lu B, Qian H, Tang H, Zhu Z, et al. miR-433 accelerates acquired chemoresistance of gallbladder cancer cells by targeting cyclin M. Oncol Lett 2018;15:3305–12.
26. Jin L, Zhang N, Zhang Q, Ding G, Yang Z, Zhang Z, et al. Serum microRNAs as potential new biomarkers for cisplatin resistance in gastric cancer patients. PeerJ 2020;8:e8943.
27. Wang J, Sun Y, Zhang X, Cai H, Zhang C, Qu H, et al. Oxidative stress activates NORAD expression by H3K27ac and promotes oxaliplatin resistance in gastric cancer by enhancing autophagy flux via targeting the miR-433-3p. Cell Death Dis 2021;12:90.
28. Jin M, Zhang F, Li Q, Xu R, Liu Y, Zhang Y, et al. Circ_0011292 knockdown mitigates progression and drug resistance in PTXresistant non-small-cell lung cancer cells by regulating miR433-3p/CHEK1 axis. Thorac Cancer 2022;13:1276–88.
29. Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, et al. Downregulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res 2009;28:82.
30. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol 2010;11:136–46.
31. Yang O, Huang J, Lin S. Regulatory effects of miRNA on gastric cancer cells. Oncol Lett 2014;8:651–6.
32. Xue J, Zhu X, Huang P, He Y, Xiao Y, Liu R, et al. Expression of miR-129-5p and miR-433 in the serum of breast cancer patients and their relationship with clinicopathological features. Oncol Lett 2020;20:2771–8.
33. Ding L, Zhang H. Circ-ATP8A2 promotes cell proliferation and invasion as a ceRNA to target EGFR by sponging miR-433 in cervical cancer. Gene 2019;705:103–8.
34. Cai X, Zhang X, Mo L, Zhu J, Yu H. LncRNA PCGEM1 promotes renal carcinoma progression by targeting miR-433-3p to regulate FGF2 expression. Cancer Biomark 2020;27:493–504.
35. Hu X, Wang J, He W, Zhao P, Ye C. MicroRNA-433 targets AKT3 and inhibits cell proliferation and viability in breast cancer. Oncol Lett 2018;15:3998–4004.
36. Zhang T, Jiang K, Zhu X, Zhao G, Wu H, Deng G, et al. miR433 inhibits breast cancer cell growth via the MAPK signaling pathway by targeting Rap1a. Int J Biol Sci 2018;14:622–32.
37. Liu SQ, Zhou ZY, Dong X, Guo L, Zhang KJ. LncRNA GNAS-AS1 facilitates ER+ breast cancer cells progression by promoting M2 macrophage polarization via regulating miR-433-3p/ GATA3 axis. Biosci Rep 2020;40:BSR20200626.
38. Zhang F, Cheng R, Li P, Lu C, Zhang G. Hsa_circ_0010235 functions as an oncogenic drive in non-small cell lung cancer by modulating miR-433-3p/TIPRL axis. Cancer Cell Int 2021;21:73.
39. Weng L, Qiu K, Gao W, Shi C, Shu F. LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR433-3p to upregulate WTAP. BMC Pulm Med 2020;20:213.
40. Chen W, Zheng G, Huang J, Zhu L, Li W, Guo T, et al. CircMED13L_012 promotes lung adenocarcinoma progression by upregulation of MAPK8 mediated by miR-433-3p. Cancer Cell Int 2021;21:111.
41. Liu B, Zhang R, Zhu Y, Hao R. Exosome derived microRNA 433 inhibits tumorigenesis through incremental infiltration of CD4 and CD8 cells in non small cell lung cancer. Oncol Lett 2021;22:607.
42. Li J, Chen M, Yu B. miR-433 suppresses tumor progression via Smad2 in non-small cell lung cancer. Pathol Res Pract 2019;215:152591.
43. Tan Y, Ge G, Pan T, Wen D, Chen L, Yu X, et al. A serum microRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis B virus. PLoS One 2014;9:e107986.
44. Ma YS, Wu TM, Qian B, Liu YS, Ding H, Fan MM, et al. KDM5A silencing transcriptionally suppresses the FXYD3-PI3K/AKT axis to inhibit angiogenesis in hepatocellular cancer via miR-433 up-regulation. J Cell Mol Med 2021;25:4040–52.
45. Song Y, Wang S, Cheng X. LINC01006 regulates the proliferation, migration and invasion of hepatocellular carcinoma cells through regulating miR-433-3p/CBX3 axis. Ann Hepatol 2021;25:100343.
46. Yang Z, Tsuchiya H, Zhang Y, Hartnett ME, Wang L. MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response elementbinding protein. J Biol Chem 2013;288:28893–9.
47. Xue J, Chen LZ, Li ZZ, Hu YY, Yan SP, Liu LY. MicroRNA-433 inhibits cell proliferation in hepatocellular carcinoma by targeting p21 activated kinase (PAK4). Mol Cell Biochem 2015;399:77– 86.
48. Yin H, Qiu X, Shan Y, You B, Xie L, Zhang P, et al. HIF-1alpha downregulation of miR-433-3p in adipocyte-derived exosomes contributes to NPC progression via targeting SCD1. Cancer Sci 2021;112:1457–70.
49. Bi S, Wang Y, Feng H, Li Q. RETRACTED ARTICLE: Long noncoding RNA LINC00657 enhances the malignancy of pancreatic ductal adenocarcinoma by acting as a competing endogenous RNA on microRNA-433 to increase PAK4 expression. Cell Cycle 2020;19:801–16.
50. Li X, Yang L, Shuai T, Piao T, Wang R. MiR-433 inhibits retinoblastoma malignancy by suppressing Notch1 and PAX6 expression. Biomed Pharmacother 2016;82:247–55.
51. Zhang M, Yu GY, Liu G, Liu WD. Circular RNA circ_0002137 regulated the progression of osteosarcoma through regulating miR-433-3p/IGF1R axis. J Cell Mol Med 2022;26:1806–16.
52. Hou XK, Mao JS. Long noncoding RNA SNHG14 promotes osteosarcoma progression via miR-433-3p/FBXO22 axis. Biochem Biophys Res Commun 2020;523:766–72.
53. Li H, Li J, Yang T, Lin S, Li H. MicroRNA-433 represses proliferation and invasion of colon cancer cells by targeting homeobox A1. Oncol Res 2018;26:315–22.
54. Zhang J, Zhang L, Zhang T, Dong XM, Zhu Y, Chen LH, et al. Reduced miR-433 expression is associated with advanced stages and early relapse of colorectal cancer and restored miR-433 expression suppresses the migration, invasion and proliferation of tumor cells in vitro and in nude mice. Oncol Lett 2018;15:7579–88.
55. Yan L, You WQ, Sheng NQ, Gong JF, Hu LD, Tan GW, et al. A CREB1/miR-433 reciprocal feedback loop modulates proliferation and metastasis in colorectal cancer. Aging 2018;10:3774– 93.
56. Li J, Mao X, Wang X, Miao G, Li J. miR-433 reduces cell viability and promotes cell apoptosis by regulating MACC1 in colorectal cancer. Oncol Lett 2017;13:81–8.
57. Hong W, Ying H, Lin F, Ding R, Wang W, Zhang M. lncRNA LINC00460 silencing represses EMT in colon cancer through downregulation of ANXA2 via upregulating miR-433-3p. Mol Ther Nucleic Acids 2020;19:1209–18.
58. Mansini AP, Lorenzo Pisarello MJ, Thelen KM, Cruz-Reyes M, Peixoto E, Jin S, et al. MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology 2018;68:561– 73.
59. Cheng H, Jiang W, Song Z, Li T, Li Y, Zhang L, et al. Circular RNA circLPAR3 facilitates esophageal squamous cell carcinoma progression through upregulating HMGB1 via sponging miR375/miR-433. Onco Targets Ther 2020;13:7759–71.
60. Li T, Li S. Circ_0023984 facilitates esophageal squamous cell carcinoma progression by regulating miR-433-3p/REV3L axis. Dig Dis Sci 2022;67:892–903.
61. Xu X, Zhu Y, Liang Z, Li S, Xu X, Wang X, et al. c-Met and CREB1 are involved in miR-433-mediated inhibition of the epithelialmesenchymal transition in bladder cancer by regulating Akt/ GSK-3beta/Snail signaling. Cell Death Dis 2016;7:e2088.
62. Wang F, Fan M, Cai Y, Zhou X, Tai S, Yu Y, et al. Circular RNA circRIMS1 acts as a sponge of miR-433-3p to promote bladder cancer progression by regulating CCAR1 expression. Mol Ther Nucleic Acids 2020;22:815–31.
63. Yu K, Liu M, Huang Y, Yu Q, Ma D, Dai G, et al. circMBOAT2 serves as the sponge of miR-433-3p to promote the progression of bladder cancer. Pathol Res Pract 2021;227:153613. 
64. You A, Rao G, Wang J, Li J, Zhang Y, Gu J, et al. MiR-433-3p restrains the proliferation, migration and invasion of glioma cells via targeting SMC4. Brain Res 2021;1767:147563.
65. Yin K, Liu X. CircMMP1 promotes the progression of glioma through miR-433/HMGB3 axis in vitro and in vivo. IUBMB Life 2020;72:2508–24.
66. Liu D, Jian X, Xu P, Zhu R, Wang Y. Linc01234 promotes cell proliferation and metastasis in oral squamous cell carcinoma via miR-433/PAK4 axis. BMC Cancer 2020;20:107.
67. Wang K, Li L, Wu J, Qiu Q, Zhou F, Wu H. The different expression profiles of microRNAs in elderly and young human dental pulp and the role of miR-433 in human dental pulp cells. Mech Ageing Dev 2015;146-148:1–11.
68. Alhasan AH, Scott AW, Wu JJ, Feng G, Meeks JJ, Thaxton CS, et al. Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc Natl Acad Sci USA 2016;113:10655–60. 
69. Panigrahi GK, Ramteke A, Birks D, Abouzeid Ali HE, Venkataraman S, Agarwal C, et al. Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer. Oncotarget 2018;9:13894–910.
70. Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY. The microRNA miR-433 promotes renal fibrosis by amplifying the TGFbeta/Smad3-Azin1 pathway. Kidney Int 2013;84:1129–44.
71. Espinosa-Diez C, Fierro-Fernandez M, Sanchez-Gomez F, Rodriguez-Pascual F, Alique M, Ruiz-Ortega M, et al. Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-beta-dependent fibrogenesis. Antioxid Redox Signal 2015;23:1092–105. 
72. Tao L, Bei Y, Chen P, Lei Z, Fu S, Zhang H, et al. Crucial role of miR-433 in regulating cardiac fibrosis. Theranostics 2016;6:2068–83.
73. Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L, et al. Upregulation of circular RNA CircNFIB attenuates cardiac fibrosis by sponging miR-433. Front Genet 2019;10:564.
74. Simon D, Laloo B, Barillot M, Barnetche T, Blanchard C, Rooryck C, et al. A mutation in the 3'-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsamiR-433 is linked to a new form of dominant X-linked chondrodysplasia. Hum Mol Genet 2010;19:2015–27.
75. Kim EJ, Kang IH, Lee JW, Jang WG, Koh JT. MiR-433 mediates ERRgamma-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. Life Sci 2013;92:562–8.
76. Dole NS, Kapinas K, Kessler CB, Yee SP, Adams DJ, Pereira RC, et al. A single nucleotide polymorphism in osteonectin 3' untranslated region regulates bone volume and is targeted by miR-433. J Bone Miner Res 2015;30:723–32.
77. Zhou CL, Li F, Wu XW, Cong CL, Liu XD, Tian J, et al. Overexpression of miRNA-433-5p protects acute spinal cord injury through activating MAPK1. Eur Rev Med Pharmacol Sci 2020;24:2829–35.
78. Liu H, Liang J, Zhong Y, Xiao G, Efferth T, Georgiev MI, et al. Dendrobium officinale polysaccharide alleviates intestinal inflammation by promoting small extracellular vesicle packaging of miR-433-3p. J Agric Food Chem 2021;69:13510–23.
79. Wang R, Zhang J. Clinical significance of miR-433 in the diagnosis of Alzheimer's disease and its effect on Abetainduced neurotoxicity by regulating JAK2. Exp Gerontol 2020;141:111080.
80. Meng T, Chen Y, Wang P, Yang L, Li C. Circ-HUWE1 knockdown alleviates amyloid-beta-induced neuronal injury in SK-N-SH cells via miR-433-3p release-mediated FGF7 downregulation. Neurotox Res 2022;40:913–24.
81. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alphasynuclein. Am J Hum Genet 2008;82:283–9.
82. Xu C, Bai Q, Wang C, Meng Q, Gu Y, Wang Q, et al. miR-433 inhibits neuronal growth and promotes autophagy in mouse hippocampal HT-22 cell line. Front Pharmacol 2020;11:536913. 
83. Zhang L, Zhang Y, Zhang X, Zhang Y, Jiang Y, Xiao X, et al. MicroRNA-433 inhibits the proliferation and migration of HUVECs and neurons by targeting hypoxia-inducible factor 1 alpha. J Mol Neurosci 2017;61:135–43.
84. Wang M. miR 433 protects pancreatic beta cell growth in high glucose conditions. Mol Med Rep 2017;16:2604–10.
85. Chen S, Sun T, Li X. Nobiletin alleviates the hypoxia/reoxygenation-induced damage in myocardial cells by modulating the miR-433/SIRT1 axis. J Food Biochem 2021;45:e13844.
86. Su SB, Tao L, Liang XL, Chen W. Long noncoding RNA GAS5 inhibits LX-2 cells activation by suppressing NF-kappaB signalling through regulation of the miR-433-3p/TLR10 axis. Dig Liver Dis 2022;54:1066–75.
87. Smith SS, Dole NS, Franceschetti T, Hrdlicka HC, Delany AM. MicroRNA-433 dampens glucocorticoid receptor signaling, impacting circadian rhythm and osteoblastic gene expression. J Biol Chem 2016;291:21717–28.
88. Garcia J, Smith SS, Karki S, Drissi H, Hrdlicka HH, Youngstrom DW, et al. miR-433-3p suppresses bone formation and mRNAs critical for osteoblast function in mice. J Bone Miner Res 2021;36:1808–22.
89. Tang X, Lin J, Wang G, Lu J. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One 2017;12:e0179860.
90. Guo H, Li T, Sun X. LncRNA HOTAIRM1, miR-433-5p and PIK3CD function as a ceRNA network to exacerbate the development of PCOS. J Ovarian Res 2021;14:19.
91. Jimenez KM, Pereira-Morales AJ, Adan A, Lopez-Leon S, Forero DA. Depressive symptoms are associated with a functional polymorphism in a miR-433 binding site in the FGF20 gene. Mol Brain 2018;11:53.
92. Kijpaisalratana N, Nimsamer P, Khamwut A, Payungporn S, Pisitkun T, Chutinet A, et al. Serum miRNA125a-5p, miR-125b5p, and miR-433-5p as biomarkers to differentiate between posterior circulation stroke and peripheral vertigo. BMC Neurol 2020;20:372.

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing