AccScience Publishing / EJMO / Volume 7 / Issue 2 / DOI: 10.14744/ejmo.2023.42324
REVIEW

Epigenetic Code for Cell Fate During Development and Disease in Human 

Selcen Celik Uzuner1
Show Less
1 Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
EJMO 2023, 7(2), 95–102; https://doi.org/10.14744/ejmo.2023.42324
Submitted: 12 February 2023 | Revised: 23 April 2023 | Accepted: 28 April 2023 | Published: 19 June 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Epigenetic reprogramming is the leading mechanism for cell differentiation in early development which gradually takes place upon zygote formation. This is governed by epigenetic modifications of genes involved in cell differentiation defined by Waddington’s landscape. Somatic cells have specific gene expression profiles regulated by distinct epigenetic patterns. Therefore, they maintain their identity and specific gene profiles throughout lifetime. Although somatic cells can be induced into stem cell-like structures, the possible transformation of the cells can be associated with disruptions in cell identity leading to carcinogenesis. The epigenetic code for cell identity is the crucial player for maintaining stability and wellness of the cells during their lifespan. This review summarizes the epigenetic regulations involved in establishment of cellular fate and their abnormalities in cancer.

Keywords
Development
disease
epigenetics
Conflict of interest
None declared.
References

1. Huntriss J. Epigenetic reprogramming in the embryo. Epigenetics Reprod Heal 2021:97–116.
2. Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016;86:80– 90.
3. Ogura A, Matoba S, Inoue K. 25th anniversary of cloning by somatic-cell nuclear transfer: Epigenetic abnormalities associated with somatic cell nuclear transfer. Reproduction 2021;162:F45–F58.
4. Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 2001;98:13734–8.
5. Cao P, Li H, Zuo Y, Nashun B. Characterization of DNA methylation patterns and mining of epigenetic markers during genomic reprogramming in SCNT embryos. Front Cell Dev Biol 2020;8:570107. 
6. Fujii K, Tanaka S, Hasegawa T, Narazaki M, Kumanogoh A, Koseki H, et al. Tet DNA demethylase is required for plasma cell differentiation by controlling expression levels of IRF4. Int Immunol 2020;32:683–90.
7. Izzo F, Lee SC, Poran A, Chaligne R, Gaiti F, Gross B, et al. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat Genet. 2020;52:378–87.
8. Gehre M, Bunina D, Sidoli S, Lübke MJ, Diaz N, Trovato M, et al. Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy. Nat Genet 2020;52:273–282.
9. Abe S, Nagatomo H, Sasaki H, Ishiuchi T. A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation. Epigenetics 2021;16:1123–34.
10. Aloia L. Epigenetic regulation of cell-fate changes that determine adult liver regeneration after injury. Front Cell Dev Biol 2021;9:346.
11. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315–22
12. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 2013;23:555–67.
13. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014;26:577–90.
14. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010;20:320–31. 
15. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–95.
16. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834– 40.
17. Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T, et al. Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics 2020;12:47.
18. Fu K, Bonora G, Pellegrini M. Interactions between core histone marks and DNA methyltransferases predict DNA methylation patterns observed in human cells and tissues. Epigenetics 2020;15:272–82.
19. Santini L, Halbritter F, Titz-Teixeira F, Suzuki T, Asami M, Ma X, et al. Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. Nat Commun 2021;12:3804.
20. Chang S, Wang Y, Xin Y, Wang S, Luo Y, Wang L, et al. DNA methylation abnormalities of imprinted genes in congenital heart disease: a pilot study. BMC Med Genomics 2021;14:4. 
21. Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: Causes and clinical consequences. Hum Reprod Update 2020;26:197–213.
22. Pastor WA, Aravind L, Rao A. TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 2013;14:341–56.
23. Vallot C, Ouimette JF, Rougeulle C. Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts. BioEssays 2016;38:869–80.
24. Hasegawa Y, Taylor D, Ovchinnikov DA, Wolvetang EJ, de Torrenté L, Mar JC. Variability of gene expression identifies transcriptional regulators of early human embryonic development. PLOS Genet 2015;11:e1005428.
25. Burton A, Brochard V, Galan C, Ruiz-Morales ER, Rovira Q, Terrones DR, et al. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol 2020;22:767–78.
26. Waddington C. How do cells differentiate? Sci Am 1953;189:108–17.
27. Shock T, Badang L, Ferguson B, Martinez-Guryn K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J Nutr Biochem 2021;95:108631.
28. Gomez-Verjan JC, Esparza-Aguilar M, Martín-Martín V, SalazarPerez C, Cadena-Trejo C, Gutierrez-Robledo LM, et al. Years of schooling could reduce epigenetic aging: a study of a Mexican cohort. Genes (Basel) 2021;12:1408.
29. Fiorito G, McCrory C, Robinson O, Carmeli C, Ochoa-Rosales C, Zhang Y, et al; BIOS Consortium; Lifepath consortium. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging (Albany NY) 2019;11:2045–70.
30. Perna L, Zhang Y, Matias-Garcia PR, Ladwig KH, Wiechmann T, Wild B, et al. Subjective mental health, incidence of depressive symptoms in later life, and the role of epigenetics: results from two longitudinal cohort studies. Transl Psychiatry 2020;10:323.
31. Venditti S, Verdone L, Reale A, Vetriani V, Caserta M, Zampieri M. Molecules of silence: effects of meditation on gene expression and epigenetics. Front Psychol 2020;11:1767.
32. Keshawarz A, Joehanes R, Guan W, Huan T, DeMeo DL, Grove ML, et al. Longitudinal change in blood DNA epigenetic signature after smoking cessation. Epigenetics 2022;17:1098–109.
33. Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, Cox J, et al. Defining the transcriptome and proteome in three func-tionally different human cell lines. Mol Syst Biol 2010;6:450.
34. Kingston RE, Tamkun JW. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb Perspect Biol 2014;6:a019349.
35. Francis NJ, Kingston RE. Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2001;2:409–21.
36. Lefrançois L, Obar JJ. Once a killer, always a killer: From cytotoxic T cell to memory cell. Immunol Rev 2010;235:206–18.
37. Kaufman J, Graf BA, Leung EC, Pollock SJ, Koumas L, Reddy SY, et al. Fibroblasts as sentinel cells: role of the CDcd40-CDcd40 ligand system in fibroblast activation and lung inflammation and fibrosis. Chest 2001;120:53–5.
38. Hamada A, Torre C, Drancourt M, Ghigo E. Trained immunity carried by non-immune cells. Front Microbiol 2019;9:3225.
39. Bustos-Arriaga J, García-Machorro J, León-Juárez M, GarcíaCordero J, Santos-Argumedo L, Flores-Romo L, et al. Activation of the innate immune response against DENV in normal non-transformed human fibroblasts. PLoS Negl Trop Dis 2011;5:e1420.
40. Kim M, Costello J. DNA methylation: An epigenetic mark of cellular memory. Exp Mol Med 2017;49:e322.
41. Henikoff S, Greally JM. Epigenetics, cellular memory and gene regulation. Curr Biol 2016;26:R644–8.
42. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 2004;38:413–43.
43. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, KhundSayeed S, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2017;356:eaaj2239.
44. Reizel Y, Morgan A, Gao L, Schug J, Mukherjee S, García MF, et al. FoxA-dependent demethylation of DNA initiates epigenetic memory of cellular identity. Dev Cell 2021;56:602–12.e4.
45. Wen Y, Dungan CM, Mobley CB, Valentino T, von Walden F, Murach KA. Nucleus type-specific DNA methylomics reveals epigenetic "memory" of prior adaptation in skeletal muscle. Function (Oxf) 2021;2:zqab038.
46. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010;463:1035–41.
47. Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, et al. Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 2019;101:472–85.e7.
48. Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 2016;167:1398–414.e24.
49. Roy R, Ramamoorthy S, Shapiro BD, Kaileh M, Hernandez D, Sarantopoulou D, et al. DNA methylation signatures reveal that distinct combinations of transcription factors specify human immune cell epigenetic identity. Immunity 2021;54:2465–80.e5.
50. Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A, Yurovsky A, et al. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet 2015;11:e1004958.
51. Oh C, Kim HR, Oh S, Ko JY, Kim Y, Kang K, et al. Epigenetic upregulation of MAGE-A isoforms promotes breast cancer cell aggressiveness. Cancers (Basel) 2021;13:3176.
52. Berry K, Wang J, Lu QR. Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases. F1000Res 2020;9:F1000 Faculty Rev–105.
53. Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. Cell Res 2020;30:465– 74. 
54. Wu X, Cheng YL, Matthen M, Yoon A, Schwartz GK, Bala S, et al. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J Exp Clin Cancer Res 2021;40:70.
55. Xing H, Wang P, Liu S, Jing S, Lin J, Yang J, et al. A global integrated analysis of UNC5C down-regulation in cancers: insights from mechanism and combined treatment strategy. Biomed Pharmacother 2021;138:111355.
56. Tokay E. Epidermal growth factor mediates up-regulation of URGCP oncogene in human hepatoma cancer cells. Mol Biol 2021;55:618–23.
57. Zhang W, Klinkebiel D, Barger CJ, Pandey S, Guda C, Miller A, et al. Global DNA hypomethylation in epithelial ovarian cancer: passive demethylation and association with genomic instability. Cancers (Basel) 2020;12:764. 
58. Cerapio JP, Marchio A, Cano L, López I, Fournié JJ, Régnault B, et al. Global DNA hypermethylation pattern and unique gene expression signature in liver cancer from patients with Indigenous American ancestry. Oncotarget 2021;12:475–92.
59. Pfeifer GP. Defining driver DNA methylation changes in human cancer. Int J Mol Sci 2018;19:1166. 
60. Danilova L, Wrangle J, Herman JG, Cope L. DNA-methylation for the detection and distinction of 19 human malignancies. Epigenetics 2022;17:191–201.
61. Smith AR, Smith RG, Burrage J, Troakes C, Al-Sarraj S, Kalaria RN, et al. A cross-brain regions study of ANK1 DNA methylation in different neurodegenerative diseases. Neurobiol Aging 2019;74:70–6.
62. O’Neill KM, Irwin RE, Mackin SJ, Thursby SJ, Thakur A, Bertens C, et al. Depletion of DNMT1 in differentiated human cells highlights key classes of sensitive genes and an interplay with polycomb repression. Epigenetics and Chromatin 2018;11:12.
63. Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D, et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 2002;22:2124–35. 
64. Alaterre E, Ovejero S, Herviou L, de Boussac H, Papadopoulos G, Kulis M, et al. Comprehensive characterization of the epigenetic landscape in Multiple Myeloma. Theranostics 2022;12:1715–29.
65. Peedicayil J. The potential role of epigenetic drugs in the treatment of anxiety disorders. Neuropsychiatr Dis Treat 2020;16:597–606.
66. Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug repurposing: discovering new faces of old acquaintances in cancer therapy. Front Oncol 2020;10:605386.
67. Megiorni F, Camero S, Pontecorvi P, Camicia L, Marampon F, Ceccarelli S, et al. OTX015 epi-drug exerts antitumor effects in ovarian cancer cells by blocking GNL3-mediated radioresistance mechanisms: cellular, molecular and computational evidence. Cancers (Basel) 2021;13:1519.
68. Shi F, Li Y, Han R, Fu A, Wang R, Nusbaum O, et al. Valerian and valeric acid inhibit growth of breast cancer cells possibly by mediating epigenetic modifications. Sci Rep 2021;11:2519
69. Brodská B, Holoubek A, Otevřelová P, Kuželová K. Combined treatment with low concentrations of decitabine and SAHA causes cell death in leukemic cell lines but not in normal peripheral blood lymphocytes. Biomed Res Int 2013;2013:659254.
70. Li X, Zhang M, Cai S, Wu Y, You Y, Wang X, et al. Concentrationdependent decitabine effects on primary NK cells viability,  phenotype, and function in the absence of obvious NK cells proliferation-original article. Front Pharmacol 2021;12:755662. 
71. Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and clinical epigenetic-based reconsideration of beckwith-wiedemann syndrome. Front Genet 2020;11:1112.
72. Lu W, Zhang R, Jiang H, Zhang H, Luo C. Computer-aided drug design in epigenetics. Front Chem 2018 ;6:57.
73. Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 2016;17:284–99.
74. Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med 2019;25:403–18.
75. Cheng H, Zou Y, Shah CD, Fan N, Bhagat TD, Gucalp R, et al. First-in-human study of inhaled Azacitidine in patients with advanced non-small cell lung cancer. Lung Cancer 2021;154:99–104.
76. Huls G, Chitu DA, Havelange V, Jongen-Lavrencic M, van de Loosdrecht AA, Biemond BJ, et al; Dutch-Belgian HematoOncology Cooperative Group (HOVON). Azacitidine maintenance after intensive chemotherapy improves DFS in older AML patients. Blood 2019;133:1457–64.
77. Sapozhnikov DM, Szyf M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun 2021;12:5711.
78. Shoaib M, Chen Q, Shi X, Nair N, Prasanna C, Yang R, et al. Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes. Nat Commun 2021;12:4800.

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing