AccScience Publishing / EJMO / Volume 6 / Issue 3 / DOI: 10.14744/ejmo.2022.67393
REVIEW

Role of Endothelial Cells in Hematological Malignancies 

Illy Enne Gomes Pereira1,2 Maira da Costa Cacemiro1,2 Juçara Gastaldi Cominal1,2 Gabriel Dessotti Barretto1,2 Fabíola Attié de Castro1,2
Show Less
1 Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
2 Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
EJMO 2022, 6(3), 210–218; https://doi.org/10.14744/ejmo.2022.67393
Submitted: 25 February 2022 | Accepted: 8 June 2022 | Published: 16 October 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Endothelial cells (EC) are key elements of vascularized tissues that form a single-cell layer that connects the vessels to the surrounding tissues. EC participate in the regulation of blood hemostasis, leukocyte homing, acute inflammation, wound healing, and antigen presentation. EC subpopulations are characterized by diverse structures, functions, and molecular profiles. In bone marrow, EC are part of the hematopoietic stem cell vascular and endosteal niche, where they play well-defined roles in hematopoietic stem cell functioning and maintenance, and reside surrounding sinusoids and blood vessels. In the past years, the clinical and pathophysiological roles of EC have been explored due to their contribution to neoangiogenesis and alterations in the vascular endothelium functions in hematological diseases. The present review discusses the EC contribution to pathogenesis of hematological malignancies and their potential use as therapeutic target in these diseases.

Keywords
Endothelial cells
hematological malignancies
bone marrow niche
pathogenesis
angiogenesis.
Conflict of interest
None declared.
References

1. Goon P, Boos C, Stonelake P, Blann A, Lip G. Detection and quantification of mature circulating endothelial cells using flow cytometry and immunomagnetic beads: A methodological comparison. Thromb Haemost 2006;96:45–52. [CrossRef]
2. Lin PP. Aneuploid Circulating Tumor-Derived Endothelial Cell (CTEC): A Novel Versatile Player in Tumor Neovascularization and Cancer Metastasis. Cells 2020;9:1539. [CrossRef]
3. Muraki C, Ohga N, Hida Y, Nishihara H, Kato Y, Tsuchiya K, et al. Cyclooxygenase-2 inhibition causes antiangiogenic effects on tumor endothelial and vascular progenitor cells. Int J Cancer 2012;130:59–70. [CrossRef]
4. van Beijnum JR, Dings RP, van der Linden E, Zwaans BMM, Ramaekers FCS, Mayo KH, et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 2006;108:2339–48. [CrossRef]
5. Young MR. Endothelial cells in the eyes of an immunologist. Cancer Immunol Immunother 2012;61:1609–16. [CrossRef]
6. Kumar P, Miller AI, Polverini PJ. p38 MAPK mediates γ-Irradiation-induced endothelial cell apoptosis, and vascular endothelial growth factor protects endothelial cells through the phosphoinositide 3-kinase-Akt-Bcl-2 pathway *. J Biol Chem 2004;279:43352–60. [CrossRef]
7. Bhatti SS, Kumar L, Dinda AK, Dawar R. Prognostic value of bone marrow angiogenesis in multiple myeloma: use of light microscopy as well as computerized image analyzer in the assessment of microvessel density and total vascular area in multiple myeloma and its correlation with various clinical, histological, and laboratory parameters. Am J Hematol 2006;81:649–56. [CrossRef]
8. Aman J, Weijers EM, van Nieuw Amerongen GP, Malik AB, van Hinsbergh VWM. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities. Am J Physiol Lung Cell Mol Physiol 2016;311:L453–66. [CrossRef]
9. Félétou M. Multiple functions of the endothelial cells. The endothelium: part 1: multiple functions of the endothelial cells— focus on endothelium-derived vasoactive mediators. Morgan & Claypool Life Sciences; 2011. Available at: https://www.ncbi.nlm.nih.gov/books/NBK57148/. Accessed Nov 8, 2021. [CrossRef]
10. Minami T, Aird WC. Endothelial cell gene regulation. Trends Cardiovasc Med 2005;15:174–84. [CrossRef]
11. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 2007;100:158–73.
12. Steurer M, Kern J, Zitt M, Amberger A, Bauer M, Gastl G, et al. Quantification of circulating endothelial and progenitor cells: comparison of quantitative PCR and four-channel flow cytometry. BMC Research Notes 2008;1:71. [CrossRef]
13. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006;86:279–367. [CrossRef] 
14. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 2007;7:803–15. [CrossRef]
15. Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 2004;4:360–70. [CrossRef]
16. Florey. The endothelial cell. Br Med J 1966;2:487–90. [CrossRef]
17. Krüger-Genge A, Blocki A, Franke R-P, Jung F. Vascular endothelial cell biology: an update. Int J Mol Sci 2019;20:4411. [CrossRef]
18. Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leuk Res 2007;31:439–44. [CrossRef]
19. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–7. [CrossRef]
20. Duda DG, Cohen KS, Scadden DT, Jain RK. A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2007;2:805–10. [CrossRef]
21. Mancuso P, Antoniotti P, Quarna J, Calleri A, Rabascio C, Tacchetti C, et al. Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin Cancer Res 2009;15:267–73. [CrossRef]
22. Obeid J, Nguyen T, Cellucci T, Larché MJ, Timmons BW. Effects of acute exercise on circulating endothelial and progenitor cells in children and adolescents with juvenile idiopathic arthritis and healthy controls: a pilot study. Pediatric Rheumatology 2015;13:41. [CrossRef]
23. Mitchell A, Fujisawa T, Mills NL, Brittan M, Newby DE, Cruden NLM. Endothelial progenitor cell biology and vascular recovery following transradial cardiac catheterization. J Am Heart Assoc 2017;6:e006610. [CrossRef]
24. Van Craenenbroeck EMF, Conraads VMA, Van Bockstaele DR, Haine SE, Vermeulen K, Van Tendeloo VF, et al. Quantification of circulating endothelial progenitor cells: a methodological comparison of six flow cytometric approaches. J Immunol Methods 2008;332:31–40. [CrossRef]
25. Kraan J, Strijbos MH, Sieuwerts AM, Foekens JA, den Bakker MA, Verhoef C, et al. A new approach for rapid and reliable enumeration of circulating endothelial cells in patients. J Thromb Haemost 2012;10:931–9. [CrossRef]
26. Lanuti P, Rotta G, Almici C, Avvisati G, Budillon A, Doretto P, et al. Endothelial progenitor cells, defined by the simultaneous surface expression of VEGFR2 and CD133, are not detectable in healthy peripheral and cord blood. Cytometry A 2016;89:259–70. [CrossRef]
27. Tamma R, Ribatti D. Bone niches, hematopoietic stem cells, and vessel formation. Int J Mol Sci 2017;18:151. [CrossRef] 
28. Kopp H-G, Avecilla ST, Hooper AT, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 2005;20:349–56. [CrossRef]
29. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, et al. Engraftment and reconstitution of hematopoiesis is de-pendent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009;4:263–74. [CrossRef] 
30. Poulos MG, Crowley MJP, Gutkin MC, Ramalingam P, Schachterle W, Thomas J-L, et al. Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis. Stem Cell Reports 2015;5:881–94. [CrossRef]
31. Charbord P, Tavian M, Humeau L, Péault B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 1996;87:4109–19. [CrossRef]
32. Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B, et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 1994;84:10–9. [CrossRef]
33. Ramalingam P, Poulos MG, Butler JM. Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Curr Opin Hematol 2017;24:289–99. [CrossRef]
34. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012;481:457–62. [CrossRef]
35. Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 2014;35:32–7.
36. Sahin AO, Buitenhuis M. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adh Migr 2012;6:39–48. [CrossRef]
37. Perlin JR, Sporrij A, Zon LI. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med 2017;95:809–19. [CrossRef]
38. Möhle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 1997;94:663–8. [CrossRef]
39. Guo T, Wang X, Qu Y, Yin Y, Jing T, Zhang Q. Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation. Stem Cell Investig 2015;2:3.
40. Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding B-S, Bonner B, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 2010;12:1046–56. [CrossRef] 
41. Poulos MG, Ramalingam P, Gutkin MC, Kleppe M, Ginsberg M, Crowley MJP, et al. Endothelial-specific inhibition of NFκB enhances functional haematopoiesis. Nat Commun 2016;7:13829. [CrossRef]
42. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 2016;532:323–8. [CrossRef]
43. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7:41–53. [CrossRef]
44. Godoy CRT, Levy D, Giampaoli V, Chamone DAF, Bydlowski SP, Pereira J. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis. Braz J Med Biol Res 2015;48:509– 14. [CrossRef]
45. Peterson L, Kini AR, Kay N. Angiogenesis is increased in B-cell chronic lymphocytic leukemia. Blood 2001;97:2529–30. [CrossRef]
46. Martinelli S, Maffei R, Castelli I, Santachiara R, Zucchini P, Fontana M, et al. Increased expression of angiopoietin-2 characterizes early B-cell chronic lymphocytic leukemia with poor prognosis. Leuk Res 2008;32:593–7. [CrossRef]
47. Rigolin GM, Maffei R, Rizzotto L, Ciccone M, Sofritti O, Daghia G, et al. Circulating endothelial cells in patients with chronic lymphocytic leukemia: clinical-prognostic and biologic significance. Cancer 2010;116:1926–37. [CrossRef]
48. Maffei R, Martinelli S, Castelli I, Santachiara R, Zucchini P, Fontana M, et al. Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia-derived Ang2 and VEGF. Leuk Res 2010;34:312–21. [CrossRef]
49. Mohammadi Najafabadi M, Shamsasenjan K, Akbarzadehalaleh P. Angiogenesis status in patients with acute myeloid leukemia: from diagnosis to post-hematopoietic stem cell transplantation. Int J Organ Transplant Med 2017;8:57–67.
50. Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000;95:309–13. [CrossRef]
51. Wierzbowska A, Robak T, Krawczyńska A, Wrzesień-Kuś A, Pluta A, Cebula B, et al. Circulating endothelial cells in patients with acute myeloid leukemia. Eur J Haematol 2005;75:492–7. 
52. Fiedler W, Graeven U, Ergün S, Verago S, Kilic N, Stockschläder M, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997;89:1870–5. [CrossRef]
53. Reale A, Melaccio A, Lamanuzzi A, Saltarella I, Dammacco F, Vacca A, et al. Functional and biological role of endothelial precursor cells in tumour progression: a new potential therapeutic target in haematological malignancies. Stem Cells Int 2016;2016:7954580. [CrossRef]
54. Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 1997;27:375–86. [CrossRef]
55. Garrido SM, Appelbaum FR, Willman CL, Banker DE. Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol 2001;29:448–57.
56. Zahran AM, Aly SS, Altayeb HA, Ali AM. Circulating endothelial cells and their progenitors in acute myeloid leukemia. Oncol Lett 2016;12:1965–70. [CrossRef]
57. Estey E, Döhner H. Acute myeloid leukaemia. Lancet 2006;368:1894–907. [CrossRef]
58. Tabe Y, Konopleva M. Role of microenvironment in resistance to therapy in AML. Curr Hematol Malig Rep 2015;10:96–103.
59. Xu Q, Li Y, Lv N, Jing Y, Xu Y, Li Y, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of pa-tients with acute myeloid leukemia: a systematic review and meta-analysis. Clin Cancer Res 2017;23:4511–22. [CrossRef]
60. Pezeshkian B, Donnelly C, Tamburo K, Geddes T, Madlambayan GJ. Leukemia mediated endothelial cell activation modulates leukemia cell susceptibility to chemotherapy through a positive feedback loop mechanism. PLos One 2013;8:e60823.
61. Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol 2012;2012:157496. [CrossRef]
62. Tenreiro MM, Correia ML, Brito MA. Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 2017;20:443–62. [CrossRef]
63. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999;93:3064–73. [CrossRef]
64. Sezer O, Niemöller K, Jakob C, Zavrski I, Heider U, Eucker J, et al. Relationship between bone marrow angiogenesis and plasma
cell infiltration and serum beta2-microglobulin levels in patients with multiple myeloma. Ann Hematol 2001;80:598–601.
65. Rajkumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 2002;8:2210–6.
66. Zhang H, Vakil V, Braunstein M, Smith ELP, Maroney J, Chen L, et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 2005;105:3286–94.
67. Cortelezzi A, Fracchiolla N, Moronetti Mazzeo L, Silvestris I, Pomati M, Somalvico F, et al. Endothelial precursors and mature endothelial cells are increased in the peripheral blood of myelodysplastic syndromes. Leuk Lymphoma 2005;46:1345–51.
68. Della Porta MG, Malcovati L, Rigolin GM, Rosti V, Bonetti E, Travaglino E, et al. Immunophenotypic, cytogenetic and functional characterization of circulating endothelial cells in myelodysplastic syndromes. Leukemia 2008;22:530–7. [CrossRef]
69. Treliński J, Wierzbowska A, Krawczyńska A, Sakowicz A, Pietrucha T, Smolewski P, et al. Circulating endothelial cells in essential thrombocythemia and polycythemia vera: correlation with JAK2-V617F mutational status, angiogenic factors and coagulation activation markers. Int J Hematol 2010;91:792–8.
70. Mesa RA, Hanson CA, Rajkumar SV, Schroeder G, Tefferi A. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood 2000;96:3374–80. [CrossRef]
71. Guy A, Gourdou-Latyszenok V, Le Lay N, Peghaire C, Kilani B, Dias JV, et al. Vascular endothelial cell expression of JAK2 V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica 2019;104:70–81. [CrossRef] 
72. Cacemiro MDC, Cominal JG, Tognon R, Nunes NS, Simões BP, Figueiredo-Pontes LL de, et al. Philadelphia-negative myeloproliferative neoplasms as disorders marked by cytokine modulation. Hematol Transfus Cell Ther 2018;40:120–31. [CrossRef]
73. Cominal JG, Cacemiro M da C, Berzoti-Coelho MG, Pereira IEG, Frantz FG, Souto EX, et al. Bone marrow soluble mediator signatures of patients with philadelphia chromosomenegative myeloproliferative neoplasms. Frontiers in Oncology 2021;11:1655. [CrossRef]
74. Camacho V, Kuznetsova V, Welner RS. Inflammatory cytokines shape an altered immune response during myeloid malignancies. Front Immunol 2021;12:4634. [CrossRef]
75. Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol 2019;10:1078. [CrossRef]
76. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 2014;507:323–8. [CrossRef]
77. Yu QC, Song W, Wang D, Zeng YA. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 2016;26:1079–98. [CrossRef]
78. McDonald AI, Shirali AS, Aragón R, Ma F, Hernandez G, Vaughn DA, et al. Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell 2018;23:210-25.e6. [CrossRef]
79. Wakabayashi T, Naito H, Suehiro J-I, Lin Y, Kawaji H, Iba T, et al. CD157 Marks tissue-resident endothelial stem cells with homeostatic and regenerative properties. Cell Stem Cell 2018;22:384–97.e6. [CrossRef] 
80. Qiu J, Hirschi KK. Endothelial cell development and its application to regenerative medicine. Circ Res 2019;125:489–501.
81. Madlambayan GJ, Meacham AM, Hosaka K, Mir S, Jorgensen M, Scott EW, et al. Leukemia regression by vascular disruption and antiangiogenic therapy. Blood 2010;116:1539–47. [CrossRef]
82. Barbier V, Erbani J, Fiveash C, Davies JM, Tay J, Tallack MR, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat Commun 2020;11:2042. [CrossRef]
83. Maffei R, Fiorcari S, Bulgarelli J, Rizzotto L, Martinelli S, Rigolin GM, et al. Endothelium-mediated survival of leukemic cells and angiogenesis-related factors are affected by lenalidomide treatment in chronic lymphocytic leukemia. Exp Hematol 2014;42:126–36.e1. [CrossRef]
84. Lin CHS, Kaushansky K, Zhan H. JAK2V617F-mutant vascular niche contributes to JAK2V617F clonal expansion in myeloproliferative neoplasms. Blood Cells Mol Dis 2016;62:42–8. [CrossRef]
85. Lin CHS, Zhang Y, Kaushansky K, Zhan H. JAK2V617Fbearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica 2018;103:1160–8. [CrossRef]
86. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013;495:227–30. [CrossRef]

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing