AccScience Publishing / EJMO / Volume 5 / Issue 2 / DOI: 10.14744/ejmo.2021.52103
RESEARCH ARTICLE

In Silico Characterisation of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) based on the Spike Protein Gene

Ashish Warghane1 Tejaswini Petkar2 Usha Preeyaa S3 Nishi Kumari4 Lavanya Ranjan5
Show Less
1 Department of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
2 Department of Agriculture and Food Sciences, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
3 Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
4 Department of Molecular Biophysics, Molecular Biophysics Unitn Institute of Science, Bangalore, Karnataka, India
5 Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
EJMO 2021, 5(2), 163–180; https://doi.org/10.14744/ejmo.2021.52103
Submitted: 4 May 2021 | Accepted: 19 June 2021 | Published: 30 June 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: The Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 has been the current global pandemic concern. With a high transmission rate, especially through direct contact, this disease spreads from person to person, and this has in turn led to a huge number of infections on a global scale.

Methods: In present study, comparative genomic analysis was performed using 151 gene sequences of the viral spike protein retrieved from NCBI and along with its translated nucleotide sequences using MEGAX software. Variation in the nucleotide and amino acid positions were identified.

Results: Our analysis revealed that 22 nucleotide variations observed in positions 13, 141, 162, 233, 284, 328, 455, 459, 716, 773, 784, 882, 1686, 1715, 1749, 1841, 2031, 2076, 2383, 2520, 2533, 3300 and 17 amino acid variations observed in position 5, 54, 78, 90, 95, 152, 153, 239, 258, 262, 572, 583, 614, 684, 677, 795 and 845. Further, phylogenetic analysis was used to uncover the patterns of spread of the virus across the affected countries. Although, certain strains showed patterns of transmission within communities, a vast majority revealed an evident mosaic pattern.

Conclusion: The data obtained provides a clear understanding of variations in the nucleotide and translated nucleotide sequences, which can be targeted towards drug designing and to study evolutionary analysis.

Keywords
In silico
SARS-CoV-2
Spike protein gene
mutation
Multiple Sequence Alignment
Variation
Conflict of interest
None declared.
References

1.WHO Coronavirus (COVID-19) Dashboard, WHO. Available from-https://www.who.int/emergencies/diseases/novelcoronavirus-2019 (Accessed on 10th April, 2021)

2. Neogi U, Hill KJ, Ambikan AT, et al. Feasibility of known rna polymerase inhibitors as anti-sars-cov-2 drugs. Pathogens. 2020;9(5).

3. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45.

4. Faridi S, Niazi S, Sadeghi K, et al. A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. Sci Total Environ. 2020;725:138401.

5. Ye G, Lin H, Chen S, et al. Environmental contamination of SARS-CoV-2 in healthcare premises. J Infect. 2020;81(2):e1-e5.

6. Wang Z, Ma W, Zheng X, Wu G, Zhang R. Household transmission of SARS-CoV-2. J Infect. 2020;81(1):179-182.

7. Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914-921. e10.

8. Ludwig S, Zarbock A. Coronaviruses and SARS-CoV-2: A Brief Overview. Anesth Analg. 2020:93-96.

9. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis. 2020;94:44-48.

10. Wang H, Li X, Li T, et al. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis. 2020;39(9):1629-1635.

11. Jogalekar MP, Veerabathini A, Gangadaran P. Novel 2019 coronavirus: Genome structure, clinical trials, and outstanding questions. Exp Biol Med. 2020;245(11):964-969.

12. Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother. 2020;64(6):1-7.

13. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020;19:410-417.

14. Dhama K, Khan S, Tiwari R, et al. Coronavirus disease 2019– COVID-19. Clin Microbiol Rev. 2020;33(4):1-48.

15. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452.

16. Dieterle ME, Haslwanter D, Bortz RH, et al. A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition. bioRxiv. May 2020.

17. Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARSCoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta - Mol Basis Dis. 2020;1866(10):165878.

18. Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020;81. doi:10.1016/j.meegid.2020.104260

19. Barnes CO, West AP, Huey-Tubman KE, et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell. 2020;182(4):828-842.e16.

20. Chen Y, Tao H, Shen S, et al. A drug screening toolkit based on the –1 ribosomal frameshifting of SARS-CoV-2. Heliyon. 2020;6(8):e04793.

21. Benvenuto D, Angeletti S, Giovanetti M, et al. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. J Infect. 2020;81(1):e24-e27.

22. Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J. 2019;16(1):1-22.

23. Kim Y, Jedrzejczak R, Maltseva NI, et al. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci. 2020;29(7):1596-1605.

24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549

25. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-526.

26. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics. 1992;8(3):275-282.

27. Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47(W1).

28. Kumar R, Verma H, Singhvi N, et al. Comparative Genomic Analysis of Rapidly Evolving SARS-CoV-2 Reveals Mosaic Pattern of Phylogeographical Distribution. mSystems. 2020;5(4).

29. Iadecola C, Anrather J, Kamel H. Effects of COVID-19 on the Nervous System. Cell. 2020;183(1):16-27.e1.

30. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-732.

31. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview - PubMed. https://pubmed.ncbi.nlm.nih.gov/32275259/. Accessed February 7, 2021.

32. Verma M, Bhatnagar S, Kumari K, et al. Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene. 2019;695:18-25.

33. Hasan MA, Hossain M, Alam MJ. A computational assay to design an epitope-based peptide vaccine against saint louis encephalitis virus. Bioinform Biol Insights. 2013;7:347-355.

34. Morozova O V., Sashina TA, Epifanova N V., Zverev V V., Kash-nikov AU, Novikova NA. Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015–2016, with cogent genes of the Rotarix and RotaTeq vaccine strains. Virus Genes. 2018;54(2):225-235.

35. Baratelli M, Pedersen LE, Trebbien R, et al. Identification of cross-reacting T-cell epitopes in structural and non-structural proteins of swine and pandemic H1N1 influenza a virus strains in pigs. J Gen Virol. 2017;98(5):895-899.

36. Dos Santos Franco L, Oliveira Vidal P, Amorim JH. In silico design of a Zika virus non-structural protein 5 aiming vaccine protection against zika and dengue in different human populations. J Biomed Sci. 2017;24(1):88.

37. Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020;55(6):105948.

38. Lokman SM, Rasheduzzaman M, Salauddin A, Barua R, Tanzina AY, Rumi MH, Hossain MI, Siddiki AMAMZ, Mannan A, Hasan MM. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach. Infect Genet Evol. 2020 Oct;84:104389.

39. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181:281–92 e286.

40. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020; 367:1444–8.

41. Yuan Huang, Chan Yang, Xin-feng Xu, Wei Xu and Shu-wen Liu. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica. 2020. 41:1141–1149.

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing