Ammonia-induced cell death: A novel immunometabolic vulnerability for cancer therapy
Ammonia, a by-product of glutamine metabolism, has emerged as a key immunometabolic regulator in the tumor microenvironment. Recent studies reveal that excessive ammonia accumulation impairs effector CD8+ T cell viability through a distinct form of organelle-centered cell death, characterized by lysosomal alkalinization, mitochondrial dysfunction, and autophagy inhibition. This phenomenon, termed ammonia-induced cell death (AICD), contributes to immune suppression and tumor progression. Here, we comprehensively review the molecular pathways governing ammonia production, transport, and detoxification, with a focus on the roles of GLS1, CPS1, Rh-family transporters, and associated solute carriers. We further highlight advances in chemical biology tools—such as ammonia-sensitive probes and isotope-labeled metabolomics—that enable the functional dissection of ammonia metabolism in immune and tumor cells. Emerging therapeutic strategies that combine ammonia metabolism modulators with immune checkpoint inhibitors offer promising avenues to enhance anti-tumor immunity. Despite recent progress, key challenges remain, including the incomplete understanding of ammonia clearance in T cells, limited data on other immune cell types, and concerns about metabolic toxicity. Targeting AICD thus represents a chemically tractable and clinically relevant approach at the interface of metabolism, immunity, and cancer therapy.
- Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807-821. doi: 10.1038/s41423-020-0488-6
- Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126-133. doi: 10.1016/j.canlet.2019.11.009
- Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients. 2018;10(11):1564. doi: 10.3390/nu10111564
- Wu J, Liu W, Qiu X, et al. A noninvasive approach to evaluate tumor immune microenvironment and predict outcomes in hepatocellular carcinoma. Phenomics. 2023;3(6):549-64. doi: 10.1007/s43657-023-00136-8
- Wang XH, Fu YL, Xu YN, et al. Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor. J Integr Med. 2024;22(6):709-18. doi: 10.1016/j.joim.2024.09.004
- Wise DR, Thompson CB. Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427-33. doi: 10.1016/j.tibs.2010.05.003
- De Vitto H, Pérez-Valencia J, Radosevich JA. Glutamine at focus: Versatile roles in cancer. Tumour Biol. 2016; 37(2):1541-1558. doi: 10.1007/s13277-015-4671-9
- Rehman U, Gupta G, Sahebkar A, Kesharwani P. Ammonia-induced cell death: A novel frontier to enhance cancer immunotherapy. Immunology. 2025;175(1):16-20. doi: 10.1111/imm.13918
- Dimski DS. Ammonia metabolism and the urea cycle: Function and clinical implications. J Vet Intern Med. 1994;8(2):73-78. doi: 10.1111/j.1939-1676.1994.tb03201.x
- Yang L, Achreja A, Yeung TL, et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 2016;24(5):685-700. doi: 10.1016/j.cmet.2016.10.011
- Cyriac R, Lee K. Glutaminase inhibition as potential cancer therapeutics: Current status and future applications. J Enzyme Inhibit Med Chem. 2024;39(1):2290911. doi: 10.1080/14756366.2023.2290911
- Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J Clin Investig. 2013;123(9):3678-3684. doi: 10.1172/jci69600
- Souba WW. Glutamine and cancer. Ann Surg. 1993;218(6):715-728. doi: 10.1097/00000658-199312000-00004
- Wang Y, Bai C, Ruan Y, et al. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun 2019;10(1):201. doi: 10.1038/s41467-018-08033-9
- Dang CV. Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 2010;9(19):3884-3886. doi: 10.4161/cc.9.19.13302
- Hird FJ, Marginson MA. Oxidative deamination of glutamate and transdeamination through glutamate. Arch Biochem Biophys. 1966;115(2):247-256. doi: 10.1016/0003-9861(66)90273-6
- Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol. 2013;3(1):201-220. doi: 10.1002/cphy.c120010
- Visek WJ. Ammonia metabolism, urea cycle capacity and their biochemical assessment. Nutr Rev. 1979;37(9):273-82. doi: 10.1111/j.1753-4887.1979.tb06690.x
- Ju YH, Bhalla M, Hyeon SJ, et al. Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimer’s disease. Cell Metab. 2022;34(8):1104-1120.e8. doi: 10.1016/j.cmet.2022.05.011
- Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT. Glutamine: Pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl). 2011;89(3):229-236. doi: 10.1007/s00109-011-0731-9
- Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 2017;3(3):169-180. doi: 10.1016/j.trecan.2017.01.005
- Jin L, Alesi GN, Kang S. Glutaminolysis as a target for cancer therapy. Oncogene. 2016;35(28):3619-2625. doi: 10.1038/onc.2015.447
- Weiner ID, Verlander JW. Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol. 2014;306(10):F1107-F1120. doi: 10.1152/ajprenal.00013.2014
- Mak DO, Dang B, Weiner ID, Foskett JK, Westhoff CM. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol Renal Physiol. 2006;290(2):F297-F305. doi: 10.1152/ajprenal.00147.2005
- Quentin F, Eladari D, Cheval L, et al. RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol. 2003;14(3):545-554. doi: 10.1097/01.asn.0000050413.43662.55
- Winkler FK. Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch. 2006;451(6):701-707. doi: 10.1007/s00424-005-1511-6
- Schiöth HB, Roshanbin S, Hägglund MG, Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med. 2013;34(2-3):571-585. doi: 10.1016/j.mam.2012.07.012
- Allen GJP, Quijada-Rodriguez AR, Wilson JM, Weihrauch D. The role of the antennal glands and gills in acid-base regulation and ammonia excretion of a marine osmoconforming brachyuran. Comp Biochem Physiol A Mol Integr Physiol. 2024;292:111619. doi: 10.1016/j.cbpa.2024.111619
- Meng M, Chen S, Lao T, Liang D, Sang N. Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle. 2010;9(19):3921-3932. doi: 10.4161/cc.9.19.13139
- Li Q, Abrashev R, Harvey LM, McNeil B. Oxidative stress-associated impairment of glucose and ammonia metabolism in the filamentous fungus, Aspergillus niger B1-D. Mycol Res. 2008;112(Pt 9):1049-1055. doi: 10.1016/j.mycres.2008.03.004
- Shen YA, Chen CL, Huang YH, et al. Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Curr Opin Chem Biol. 2021;62:64-81. doi: 10.1016/j.cbpa.2021.01.006
- He X, Li J, An S, Jiang C. pH-sensitive drug-delivery systems for tumor targeting. Ther Deliv. 2013;4(12):1499-1510. doi: 10.4155/tde.13.120
- Zhang L, Michele Nawata C, De Boeck G, Wood CM. Rh protein expression in branchial neuroepithelial cells, and the role of ammonia in ventilatory control in fish. Comp Biochem Physiol A Mol Integr Physiol. 2015;186:39-51. doi: 10.1016/j.cbpa.2014.10.004
- Zhang J, Zeng W, Han Y, Lee WR, Liou J, Jiang Y. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition ofthe TMEM175 channel. Mol Cell. 2023;83(14):2524-2539.e7. doi: 10.1016/j.molcel.2023.06.004
- Birsoy K, Wang T, Chen WW, Freinkman E, Abu- Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162(3):540-551. doi: 10.1016/j.cell.2015.07.016
- Gibson SB. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy. 2010;6(7):835-837. doi: 10.4161/auto.6.7.13335
- Villar VH, Merhi F, Djavaheri-Mergny M, Durán RV. Glutaminolysis and autophagy in cancer. Autophagy. 2015;11(8):1198-208. doi: 10.1080/15548627.2015.1053680
- Polletta L, Vernucci E, Carnevale I, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11(2):253-270. doi: 10.1080/15548627.2015.1009778
- Eng CH, Abraham RT. The autophagy conundrum in cancer: Influence of tumorigenic metabolic reprogramming. Oncogene. 2011;30(47):4687-4696. doi: 10.1038/onc.2011.220
- Weiner ID, Verlander JW. Molecular physiology of the Rh ammonia transport proteins. Curr Opin Nephrol Hypertens. 2010;19(5):471-477. doi: 10.1097/MNH.0b013e32833bfa4e
- Oh MH, Sun IH, Zhao L, et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Investig. 2020;130(7):3865-3884. doi: 10.1172/jci131859
- Zhang H, Liu J, Yuan W, et al. Ammonia-induced lysosomal and mitochondrial damage causes cell death of effector CD8(+) T cells. Nat Cell Biol. 2024;26(11):1892-1902. doi: 10.1038/s41556-024-01503-x
- Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles’ heel of cancer: Disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol. 2024;15:1345522. doi: 10.3389/fphar.2024.1345522
- Tang K, Zhang H, Deng J, et al. Ammonia detoxification promotes CD8(+) T cell memory development by urea and citrulline cycles. Nat Immunol. 2023;24(1):162-173. doi: 10.1038/s41590-022-01365-1
- Ma R, Ji T, Zhang H, et al. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol. 2018;20(1):21-7. doi: 10.1038/s41556-017-0002-2
- Zhang H, Tang K, Ma J, et al. Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8(+) T-cell memory development. Nat Cell Biol. 2020;22(1):18-25. doi: 10.1038/s41556-019-0440-0
- Auron A, Brophy PD. Hyperammonemia in review: Pathophysiology, diagnosis, and treatment. Pediatr Nephrol. 2012;27(2):207-222. doi: 10.1007/s00467-011-1838-5
- Kim GW, Lee DH, Jeon YH, et al. Glutamine synthetase as a therapeutic target for cancer treatment. Int J Mol Sci. 2021;22(4):1701. doi: 10.3390/ijms22041701
- Yoshikawa S, Nagao M, Toh R, et al. Inhibition of glutaminase 1-mediated glutaminolysis improves pathological cardiac remodeling. Am J Physiol Heart Circ Physiol. 2022;322(5):H749-H761. doi: 10.1152/ajpheart.00692.2021
- van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36(1):68-78. doi: 10.1016/j.immuni.2011.12.007
- Wang JB, Erickson JW, Fuji R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18(3):207-219. doi: 10.1016/j.ccr.2010.08.009
- Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol. 2011;300(1):F11-F23. doi: 10.1152/ajprenal.00554.2010
- Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002;67(4):259-279. doi: 10.1016/s0301-0082(02)00019-9
- Kasatkina LA, Borisova TA. Glutamate release from platelets: Exocytosis versus glutamate transporter reversal. Int J Biochem Cell Biol. 2013;45(11):2585-2595. doi: 10.1016/j.biocel.2013.08.004
- Giles JR, Ngiow SF, Manne S, et al. Shared and distinct biological circuits in effector, memory and exhausted CD8(+) T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat Immunol. 2022;23(11):1600-1613. doi: 10.1038/s41590-022-01338-4
- Li T, Copeland C, Le A. Glutamine metabolism in cancer. Adv Exp Med Biol. 2021;1311:17-38. doi: 10.1007/978-3-030-65768-0_2
- DeBerardinis RJ, Cheng T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313-324. doi: 10.1038/onc.2009.358
- Li Z, Lin J, Yin P. Ammonia death: A novel potential strategy to augment immunotherapy in cancer. Cancer Gene Ther. 2024;31(12):1751-1753. doi: 10.1038/s41417-024-00851-y
- Lu K. Cellular pathogenesis of hepatic encephalopathy: An update. Biomolecules. 2023;13(2):396. doi: 10.3390/biom13020396
- Moedas MF, Simões RJM, Silva MFB. Mitochondrial targets in hyperammonemia: Addressing urea cycle function to improve drug therapies. Biochem Pharmacol. 2024;222:116034. doi: 10.1016/j.bcp.2024.116034
- Vuillefroy de Silly R, Pericou L, Seijo B, Crespo I, Irving M. Acidity suppresses CD8 + T-cell function by perturbing IL-2, mTORC1, and c-Myc signaling. EMBO J. 2024;43:4922-4953. doi: 10.1038/s44318-024-00235-w
- Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 2023;41(3):421-433. doi: 10.1016/j.ccell.2023.01.009
- Sharma S, Agnihotri N, Kumar S. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochem Pharmacol. 2022;198:114943. doi: 10.1016/j.bcp.2022.114943
- Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 2012;23(4):362-369. doi: 10.1016/j.semcdb.2012.02.002
- Yoo HC, Park SJ, Nam M, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 2020;31(2):267- 283.e12. doi: 10.1016/j.cmet.2019.11.020
- Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9(2):216-237. doi: 10.1007/s13238-017-0451-1
- Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30(1):36-50. doi: 10.1016/j.cmet.2019.06.001
- Lee HM, Nayak A, Kim J. A new role for ammonia in tumorigenesis? Cell Metab. 2022;34(7):944-946. doi: 10.1016/j.cmet.2022.06.009
- Cheng C, Geng F, Li Z, et al. Ammonia stimulates SCAP/Insig dissociation and SREBP-1 activation to promote lipogenesis and tumour growth. Nat Metab. 2022;4(5):575-588. doi: 10.1038/s42255-022-00568-y
- Kouidhi S, Ben Ayed F, Benammar Elgaaied A. Targeting tumor metabolism: A new challenge to improve immunotherapy. Front Immunol. 2018;9:353. doi: 10.3389/fimmu.2018.00353
- Li C, Zhang G, Zhao L, Ma Z, Chen H. Metabolic reprogramming in cancer cells: Glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol. 2016;14(1):15. doi: 10.1186/s12957-016-0769-9
- Bell HN, Huber AK, Singhal R, et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab. 2023;35(1):134-149.e6. doi: 10.1016/j.cmet.2022.11.013
- Weisshaar N, Ma S, Ming Y, et al. The malate shuttle detoxifies ammonia in exhausted T cells by producing 2-ketoglutarate. Nat Immunol. 2023;24(11):1921-1932. doi: 10.1038/s41590-023-01636-5
- Chen G, Wang C, Huang S, et al. Novel roles of ammonia in physiology and cancer. J Mol Cell Biol. 2025;17(1):mjaf007. doi: 10.1093/jmcb/mjaf007
- Chengqun Q, Xijun W, Yangyang F, Xiaoqin Y, Min C, Jun X. Prognostic and immune modulatory effects of ammonia-induced cell death in head and neck squamous cell carcinoma. Discov Oncol. 2025;16(1):1039. doi: 10.1007/s12672-025-02508-0
- Zhao L, Lee ZH, Shah YM. Ammonia as a critical metabolic modulator of anti-tumor immunity. Med Gas Res. 2025;15(3):446-447. doi: 10.4103/mgr.MEDGASRES-D-24-00147
- Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell. 2024;187(2):235-256. doi: 10.1016/j.cell.2023.11.044
- Park W, Wei S, Kim BS, et al. Diversity and complexity of cell death: A historical review. Exp Mol Med. 2023;55(8):1573-1594. doi: 10.1038/s12276-023-01078-x
- Wang X, Lin J, Li Z, Wang M. In what area of biology has a “new” type of cell death been discovered? Biochim Biophys Acta Rev Cancer. 2023;1878(5):188955. doi: 10.1016/j.bbcan.2023.188955
- Chen L, Cui H. Targeting glutamine induces apoptosis: A cancer therapy approach. Int J Mol Sci. 2015;16(9):22830-22855. doi: 10.3390/ijms160922830
- Eil R, Vodnala SK, Clever D, et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 2016;537(7621):539-543. doi: 10.1038/nature19364
- Holecek M. Side effects of long-term glutamine supplementation. J Parent Enteral Nutr. 2013;37(5):607-616. doi: 10.1177/0148607112460682
- Halama A, Suhre K. Advancing cancer treatment by targeting glutamine metabolism-a roadmap. Cancers (Basel). 2022;14(3):553. doi: 10.3390/cancers14030553
- Wang Z, Liu F, Fan N, et al. Targeting glutaminolysis: New perspectives to understand cancer development and novel strategies for potential target therapies. Front Oncol. 2020;10:589508. doi: 10.3389/fonc.2020.589508
- Dammeijer F, van Gulijk M, Mulder EE, et al. The PD-1/ PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell. 2020;38(5):685-700.e8. doi: 10.1016/j.ccell.2020.09.001
- Suarez GV, Melucci Ganzarain CDC, Vecchione MB, et al. PD-1/PD-L1 Pathway modulates macrophage susceptibility to Mycobacterium tuberculosis specific CD8(+) T cell induced death. Sci Rep. 2019;9(1):187. doi: 10.1038/s41598-018-36403-2
- Jiang B, Zhang J, Zhao G, et al. Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Mol Cell. 2022;82(10):1821- 1835.e6. doi: 10.1016/j.molcel.2022.03.016
- Wicker CA, Hunt BG, Krishnan S, et al. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett. 2021;502:180-188. doi: 10.1016/j.canlet.2020.12.038
- Polfus LM, Khajuria RK, Schick UM, et al. Whole-exome sequencing identifies loci associated with blood cell traits and reveals a role for alternative GFI1B splice variants in human hematopoiesis. Am J Hum Genet. 2016;99(2):481-488. doi: 10.1016/j.ajhg.2016.06.016
- Mayer M, Schaaf G, Mouro I, et al. Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters. J Gen Physiol. 2006;127(2):133-144. doi: 10.1085/jgp.200509369
- Schulte ML, Fu A, Zhao P, et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med. 2018;24(2):194-202. doi: 10.1038/nm.4464
- Zhao Y, Zhu Y, Huang J, Song Z, Tang W. Influence of in situ biochar capping on microbial dynamics and ammonia nitrogen release in sediment. J Environ Manag. 2025;373:123524. doi: 10.1016/j.jenvman.2024.123524
- Steichen M, Decrem Y, Godfroid E, Buess-Herman C. Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosens Bioelectron. 2007;22(9-10):2237-2243. doi: 10.1016/j.bios.2006.10.041
- Esteban R, Ariz I, Cruz C, Moran JF. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016;248:92-101. doi: 10.1016/j.plantsci.2016.04.008
- Gouda MA, Voss MH, Tawbi H, et al. A phase I/II study of the safety and efficacy of telaglenastat (CB-839) in combination with nivolumab in patients with metastatic melanoma, renal cell carcinoma, and non-small-cell lung cancer. ESMO Open. 2025;10(5):104536. doi: 10.1016/j.esmoop.2025.104536
