Pre-operative prediction of high-risk molecular subtypes of glioma based on multimodal MRI tumor habitat imaging

Gliomas are the most common malignant brain tumors driven by genetic and microenvironmental factors, with newly recognized high-risk molecular subtypes requiring aggressive treatment. This study aims to address the limitations of biopsy-based molecular typing by developing a non-invasive multimodal magnetic resonance imaging habitat imaging model to predict high-risk subtypes, thereby improving early detection and guiding treatment. Data of 204 glioma patients retrieved from The Cancer Genome Atlas public database were retrospectively analyzed. Habitat imaging based on K-means clustering was applied to three habitat regions in pre-operative T1CE and T2FLAIR sequences, extracting 10,416 radiomics features. Analysis of variance was used to assess the correlation between features and labels, screening radiomics features significantly associated with high-risk molecular subtypes. A support vector machine classifier was employed to construct a habitat radiomics model. Logistic regression (LR) was used to identify relevant clinical features, and a clinical prediction model was established, followed by performance evaluation. A combined model was developed by integrating the habitat radiomics model and the clinical model using multivariate LR. The predictive performance of the three models was evaluated and compared using metrics such as the area under the receiver operating characteristic curve (AUC), decision curve analysis (DCA), and calibration curves. The combined model achieved AUC = 0.943 and 0.912 in the training and test sets, respectively, outperforming the clinical model (training set: AUC = 0.830; test set: AUC = 0.841) and the habitat radiomics model (training set: AUC = 0.914; test set: AUC = 0.864). In DCA, the combined model demonstrated significantly higher and more stable net benefits within a reasonable clinical threshold range compared to the other two models. Calibration curves indicated that the combined model also exhibited superior calibration performance. This study shows that combining clinical and radiomics data improves glioma risk prediction, but multicenter validation of such approach for clinical use is warranted.
- Le VH, Minh T, Kha QH, et al. A transfer learning approach on MRI-based radiomics signature for overall survival prediction of low-grade and high-grade gliomas. Med Biol Eng Comput. 2023,61(10):2699-2712. doi: 10.1007/s11517-023-02875-2
- Choi Y, Nam Y, Jang J, et al. Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models. Eur Radiol. 2021;31(4):2084-2093. doi: 10.1007/s00330-020-07335-1
- Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2016-2020. Neuro Oncol. 2023,25(12 Suppl 2):iv1-iv99. doi: 10.1093/neuonc/noad149
- Wirsching HG, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol. 2016;134:381-397. doi: 10.1016/b978-0-12-802997-8.00023-2
- Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 2023;329(7):574-587. doi: 10.1001/jama.2023.0023
- Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: A society for neuro-oncology (SNO) and European society of neuro-oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020,22(8):1073-1113. doi: 10.1093/neuonc/noaa106
- Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23(8):1231-1251. doi: 10.1093/neuonc/noab106
- Weller M, Van den Bent M, Preusser M, et al. Author correction: EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2022;19(5):357-358. doi: 10.1038/s41571-022-00623-3
- Perry A, Wesseling P. Histologic classification of gliomas. Handb Clin Neurol. 2016,134:71-95. doi: 10.1016/B978-0-12-802997-8.00005-0.
- Tomaszewski W, Sanchez-Perez L, Gajewski TF, et al. Brain tumor microenvironment and host state: Implications for Immunotherapy. Clin Cancer Res. 2019,25(14):4202-4210. doi: 10.1158/1078-0432.CCR-18-1627.
- Gisina A, Kholodenko I, Kim Y, et al. Glioma stem cells: Novel data obtained by single-cell sequencing. Int J Mol Sci. 2022;23(22):14224. doi: 10.3390/ijms232214224
- Tian J, Bai X, Quek C. Single-cell informatics for tumor microenvironment and immunotherapy. Int J Mol Sci. 2024;25(8):4485. doi: 10.3390/ijms25084485
- Sampson JH, Gunn MD, Fecci PE, et al. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 2020,20(1):12-25. doi: 10.1038/s41568-019-0224-7
- Desland FA, Hormigo A. The CNS and the brain tumor microenvironment: Implications for glioblastoma immunotherapy. Int J Mol Sci. 2020;21(19):7358. doi: 10.3390/ijms21197358
- Galbraith K, Snuderl M. Molecular pathology of gliomas. Surg Pathol Clin. 2021;14(3):379-386. doi: 10.1016/j.path.2021.05.003
- Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications. Cancer Discov. 2021;11(3):575-590. doi: 10.1158/2159-8290.cd-20-1474
- De la Fuente MI. Adult-type diffuse gliomas. Continuum (Minneap Minn). 2023;29(6):1662-1679. doi: 10.1212/con.0000000000001352
- Xu S, Tang L, Li X, et al. Immunotherapy for glioma: Current management and future application. Cancer Lett. 2020;476:1-12. doi: 10.1016/j.canlet.2020.02.002
- Park YW, Vollmuth P, Foltyn-Dumitru M, et al. The 2021 WHO classification for gliomas and implications on imaging diagnosis: Part 1-key points of the fifth edition and summary of imaging findings on adult-type diffuse gliomas. J Magn Reson Imaging. 2023;58(3):677-689. doi: 10.1002/jmri.28743
- Fan H, Luo Y, Gu F, et al. Artificial intelligence-based MRI radiomics and radiogenomics in glioma. Cancer Imaging. 2024;24(1):36. doi: 10.1186/s40644-024-00682-y
- Cao L, Shi K, Liu Y, et al. Identification of specific genes as molecular markers for rapid and accurate detection of oil-tea Camellia anthracnose pathogen Colletotrichum fructicola in China. Front Microbiol. 2024;15:1442922. doi: 10.3389/fmicb.2024.1442922.
- Radaic A, Kamarajan P, Cho A, et al. Biological biomarkers of oral cancer. Periodontol 2000. 2024;96(1):250-280. doi: 10.1111/prd.12542
- Andryukov BG, Lyapun IN, Matosova EV, et al. Biosensor technologies in medicine: From detection of biochemical markers to research into molecular targets (review). Sovrem Tekhnol Med. 2021;12(6):70-83. doi: 10.17691/stm2020.12.6.09
- Zhu Y, Wang J, Xue C, et al. Deep learning and habitat radiomics for the prediction of glioma pathology using multiparametric MRI: A multicenter study. Acad Radiol. 2025;32(2):963-975. doi: 10.1016/j.acra.2024.09.021
- Qiao J, Wu H, Liu J, et al. Spectral analysis based on hemodynamic habitat imaging predicts isocitrate dehydrogenase status and prognosis in high-grade glioma. World Neurosurg. 2023;175:e520-e530. doi: 10.1016/j.wneu.2023.03.136
- Madan E, Palma AM, Vudatha V, et al. Cell competition in carcinogenesis. Cancer Res. 2022;82(24):4487-4496. doi: 10.1158/0008-5472.can-22-2217
- Caiado F, Silva-Santos B, Norell H. Intra-tumour heterogeneity - going beyond genetics. FEBS J. 2016;283(12):2245-2258. doi: 10.1111/febs.13705
- Brychtová V, Valík V, Vojtěšek B. Variability in the solid cancer cell population and its consequences for cancer diagnostics and treatment. Klin Onkol. 2018,31(Suppl 2):5-13. doi: 10.14735/amko20182s5
- Lin D, Shen L, Luo M, et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct Target Ther. 2021;6(1):404. doi: 10.1038/s41392-021-00817-8
- Ludwig K, Kornblum HI. Molecular markers in glioma. J Neurooncol. 2017;134(3):505-512. doi: 10.1007/s11060-017-2379-y
- Hsieh WC, Budiarto BR, Wang YF, et al. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci. 2022,29(1):96. doi: 10.1186/s12929-022-00879-y
- Sun C, Jiang C, Wang X, et al. MR-based radiomics predicts CDK6 expression and prognostic value in high-grade glioma. Acad Radiol. 2024;31(12):5141-5153. doi: 10.1016/j.acra.2024.06.006
- Gao J, Liu Z, Pan H, et al. Preoperative discrimination of CDKN2A/B homozygous deletion status in isocitrate dehydrogenase-mutant astrocytoma: A deep learning-based radiomics model using MRI. J Magn Reson Imaging. 2024;59(5):1655-1664. doi: 10.1002/jmri.28945
- Bale TA, Jordan JT, Rapalino O, et al. Financially effective test algorithm to identify an aggressive, EGFR-amplified variant of IDH-wildtype, lower-grade diffuse glioma. Neuro Oncol. 2019;21(5):596-605. doi: 10.1093/neuonc/noy201
- Vuong HG, Altibi A, Duong U, et al. TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups-A meta-analysis of aggregate data. Crit Rev Oncol Hematol. 2017;120:1-9. doi: 10.1016/j.critrevonc.2017.09.013
- Yang X, Niu W, Wu K, et al. Diffusion kurtosis imaging-based habitat analysis identifies high-risk molecular subtypes and heterogeneity matching in diffuse gliomas. Ann Clin Transl Neurol. 2024;11(8):2073-2087. doi: 10.1002/acn3.52128
- Caii W, Wu X, Guo K, et al. Integration of deep learning and habitat radiomics for predicting the response to immunotherapy in NSCLC patients. Cancer Immunol Immunother. 2024;73(8):153. doi: 10.1007/s00262-024-03724-3
- Liu H, Hou CJ, Wei M, et al. High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer. BMC Med Imaging. 2025;25(1):16. doi: 10.1186/s12880-025-01551-1
- Wu J, Meng H, Zhou L, et al. Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: A multicenter study. Sci Rep. 2024;14(1):15877. doi: 10.1038/s41598-024-66751-1
- Jiang Y, Zhou K, Sun Z, et al. Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics. Cell Rep Med. 2023;4(8):101146. doi: 10.1016/j.xcrm.2023.101146
- Avanzo M, Wei L, Stancanello J, et al. Machine and deep learning methods for radiomics. Med Phys. 2020;47(5):e185-e202. doi: 10.1002/mp.13678
- Huang H, Chen H, Zheng D, et al. Habitat-based radiomics analysis for evaluating immediate response in colorectal cancer lung metastases treated by radiofrequency ablation. Cancer Imaging. 2024;24(1):44. doi: 10.1186/s40644-024-00692-w
- Niu W, Yan J, Hao M, et al. MRI transformer deep learning and radiomics for predicting IDH wild type TERT promoter mutant gliomas. NPJ Precis Oncol. 2025;9(1):89. doi: 10.1038/s41698-025-00884-y