AccScience Publishing / CP / Online First / DOI: 10.36922/CP025220037
REVIEW ARTICLE

Quantitative bibliometric insights into cisplatin resistance in breast cancer (2010–2024): Implications for drug development

Jiawei Kang1 Nan Jiang1 Munire Shataer2 Tayier Tuersong3*
Show Less
1 The First College of Clinical Medicine, Xinjiang Medical University, Ürümqi, Xinjiang, China
2 Department of Histology and Embryology, Basic Medical College, Xinjiang Medical University, Ürümqi, Xinjiang, China
3 Department of Pharmacy, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
Received: 29 May 2025 | Revised: 22 June 2025 | Accepted: 1 July 2025 | Published online: 30 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study presents an extensive bibliometric analysis of cisplatin resistance (CR) in breast cancer (BC) from 2010 to 2024, elucidating global research trends, collaboration networks, and prospective research directions. Particular attention is given to novel therapeutic strategies, such as multi-target drug design and biomarker-guided treatments, aimed at overcoming challenges associated with drug resistance. This study utilizes the PubMed database and employs a topic search strategy, integrating the R package “bibliometrix” to conduct an in-depth analysis of the number of published documents, patterns of collaboration, journal impact, author contributions, institutional outputs, national collaboration networks, as well as keyword co-occurrences and citation networks. China and the United States are the principal contributors to research in this domain, with the Islamic Azad University and the journal Cancers serving as the primary platforms for academic dissemination. Notable researchers in this field include Wang, B. and Chekhun, V. F. Furthermore, the study highlights three particularly significant publications. Research hotspots include CR, triple-negative BC, BRCA1, DNA repair, microRNA, prostate cancer, ceRNA, LINCRNA, and prognosis, while trending topics comprise CR, triple-negative BC, BRCA1, autophagy, cytotoxicity, and DNA damage. This study provides actionable insights into research trends and translational opportunities in BC CR, emphasizing the integration of microRNA regulation, autophagy mechanisms, and multi-target drug design in clinical applications. Collaborative efforts between leading countries and institutions are pivotal to advancing therapeutic strategies and improving patient outcomes.

Keywords
Breast cancer
Bibliometrics
Research trends
Cisplatin resistance
Multi-target drug design
Precision oncology
Therapeutic strategies
Translational medicine
Funding
This study was supported by the Natural Science Foundation of Xinjiang Uyghur Autonomous Region– Youth Science Foundation (2022D01C277), China.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Cox K, Alford B, Soliman H. Emerging therapeutic strategies in breast cancer. South Med J. 2017;110(10):632-637. doi: 10.14423/SMJ.0000000000000709

 

  1. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299-309. doi: 10.1038/s41586-019-1730-1

 

  1. Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep. 2020;72(5):1125-1151. doi: 10.1007/s43440-020-00138-7

 

  1. Duan M, Ulibarri J, Liu KJ, Mao P. Role of nucleotide excision repair in cisplatin resistance. Int J Mol Sci. 2020;21(23):9248. doi: 10.3390/ijms21239248

 

  1. Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother. 2019;114:108800. doi: 10.1016/j.biopha.2019.108800

 

  1. Zhou J, Kang Y, Chen L, et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol. 2020;11:343. doi: 10.3389/fphar.2020.00343

 

  1. Wang S, Li MY, Liu Y, et al. The role of microRNA in cisplatin resistance or sensitivity. Expert Opin Ther Targets. 2020;24(9):885-897. doi: 10.1080/14728222.2020.1785431

 

  1. Tan Q, Joshua AM, Wang M, et al. Up-regulation of autophagy is a mechanism of resistance to chemotherapy and can be inhibited by pantoprazole to increase drug. Cancer Chemother Pharmacol. 2017;79(5):959-969. doi: 10.1007/s00280-017-3298-5

 

  1. Koerniadi MMU, Tadjoedin FM, Hutomo DI, Tadjoedin ESS, Rizal MI, Sulijaya B. Bibliometric network analysis and visualization of research trends in gingivectomy. Clin Cosmet Investig Dent. 2024;16:209-218. doi: 10.2147/CCIDE.S470234

 

  1. Chou W, Chow JC. Identifying authorial roles in research: A Kano model-based bibliometric analysis for the Journal of Medicine (Baltimore) 2023. Medicine (Baltimore). 2024;103(35):e39234. doi: 10.1097/MD.0000000000039234

 

  1. Rae AR, Mork JG, Demner-Fushman D. The NLM indexer assignment dataset: a new large-scale dataset for reviewer assignment research. J Assoc Inf Sci Technol. 2023;74(2):205-218. doi: 10.1002/asi.24722

 

  1. D’Souza J, Ng V. Classifying temporal relations in clinical data: A hybrid, knowledge-rich approach. J Biomed Inform. 2013;46 Suppl(0):S29-S39. doi: 10.1016/j.jbi.2013.08.003

 

  1. Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017;11(4):959-975. doi: 10.1016/j.joi.2017.04.002

 

  1. Ogunsakin RE, Ebenezer O, Ginindza TG. A bibliometric analysis of the literature on norovirus disease from 1991- 2021. Int J Environ Res Public Health. 2022;19(5):2508. doi: 10.3390/ijerph19052508

 

  1. Musa HH, Musa TH. A systematic and thematic analysis of the top 100 cited articles on mRNA vaccine indexed in Scopus database. Hum Vaccin Immunother. 2022;18(6):2135927. doi: 10.1080/21645515.2022.2135927

 

  1. Volpe S, Mastroleo F, Krengli M, Jereczek-Fossa BA. Quo vadis Radiomics? Bibliometric analysis of 10-year Radiomics journey. Eur Radiol. 2023;33(10):6736-6745. doi: 10.1007/s00330-023-09645-6

 

  1. Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25(2):152-165. doi: 10.1016/j.ccr.2014.01.009

 

  1. Birkbak NJ, Li Y, Pathania S, et al. Overexpression of BLM promotes DNA damage and increased sensitivity to platinum salts in triple-negative breast and serous ovarian cancers. Ann Oncol. 2018;29(4):903-909. doi: 10.1093/annonc/mdy049

 

  1. Berrada N, Delaloge S, Andre F. Treatment of triple-negative metastatic breast cancer: Toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010;21 Suppl 7:vii30-vii35. doi: 10.1093/annonc/mdq279

 

  1. Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869-1883. doi: 10.1038/onc.2011.384

 

  1. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378. doi: 10.1016/j.ejphar.2014.07.025

 

  1. Imyanitov EN. Cytotoxic and targeted therapy for BRCA1/2- driven cancers. Hered Cancer Clin Pract. 2021;19(1):36. doi: 10.1186/s13053-021-00193-y

 

  1. Janysek DC, Kim J, Duijf PHG, Dray E. Clinical use and mechanisms of resistance for PARP inhibitors in homologous recombination-deficient cancers. Transl Oncol. 2021;14(3):101012. doi: 10.1016/j.tranon.2021.101012

 

  1. Raimundo L, Calheiros J, Saraiva L. Exploiting DNA damage repair in precision cancer therapy: BRCA1 as a prime therapeutic target. Cancers (Basel). 2021;13(14):3438. doi: 10.3390/cancers13143438

 

  1. Kalra M, Tong Y, Jones DR, et al. Cisplatin +/- rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer. NPJ Breast Cancer. 2021;7(1):29. doi: 10.1038/s41523-021-00240-w

 

  1. Cai C. A novel mechanism to induce BRCAness in cancer cells. Cancer Res. 2020;80(14):2977-2978. doi: 10.1158/0008-5472.CAN-20-1451

 

  1. Murakami M, Izumi H, Kurita T, Koi C, Morimoto Y, Yoshino K. UBE2L6 is involved in cisplatin resistance by regulating the transcription of ABCB6. Anticancer Agents Med Chem. 2020;20(12):1487-1496. doi: 10.2174/1871520620666200424130934

 

  1. Gu Y, Fei Z, Zhu R. miR-21 modulates cisplatin resistance of gastric cancer cells by inhibiting autophagy via the PI3K/ Akt/mTOR pathway. Anticancer Drugs. 2020;31(4):385-393. doi: 10.1097/CAD.0000000000000886

 

  1. Wang H, Chen J, Zhang S, et al. MiR-223 regulates autophagy associated with cisplatin resistance by targeting FBXW7 in human non-small cell lung cancer. Cancer Cell Int. 2020;20:258. doi: 10.1186/s12935-020-01284-x

 

  1. Yu JL, Gao X. MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy. Eur Rev Med Pharmacol Sci. 2020;24(4):1688- 1696. doi: 10.26355/eurrev_202002_20343

 

  1. Xia J, He Y, Meng B, et al. NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma. Mol Oncol. 2020;14(4):763-778. doi: 10.1002/1878-0261.12641

 

  1. Liu X, Wang X, Chai B, et al. miR-199a-3p/5p regulate tumorgenesis via targeting Rheb in non-small cell lung cancer [published correction appears in Int J Biol Sci. 2023 Jul 27;19(12):3830. doi: 10.7150/ijbs.86344.]. Int J Biol Sci. 2022;18(10):4187-4202. doi: 10.7150/ijbs.70312

 

  1. Wang W, Chen L, Zhu W, et al. miR-4486 reverses cisplatin-resistance of colon cancer cells via targeting ATG7 to inhibiting autophagy. Exp Ther Med. 2021;22(6):1465. doi: 10.3892/etm.2021.10900

 

  1. Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S, Mansouri K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med. 2023;12(10):11542-11569. doi: 10.1002/cam4.5577

 

  1. Chen Y, Gibson SB. Three dimensions of autophagy in regulating tumor growth: Cell survival/death, cell proliferation, and tumor dormancy. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166265. doi: 10.1016/j.bbadis.2021.166265

 

  1. Noguchi M, Hirata N, Tanaka T, Suizu F, Nakajima H, Chiorini JA. Autophagy as a modulator of cell death machinery. Cell Death Dis. 2020;11(7):517. doi: 10.1038/s41419-020-2724-5

 

  1. Cocco S, Leone A, Roca MS, et al. Inhibition of autophagy by chloroquine prevents resistance to PI3K/AKT inhibitors and potentiates their antitumor effect in combination with paclitaxel in triple negative breast cancer models. J Transl Med. 2022;20(1):290. doi: 10.1186/s12967-022-03462-z

 

  1. Usman RM, Razzaq F, Akbar A, et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol. 2021;17(3):193-208. doi: 10.1111/ajco.13449

 

  1. de Souza ASC, Gonçalves LB, Lepique AP, de Araujo- Souza PS. The role of autophagy in tumor immunology-complex mechanisms that may be explored therapeutically. Front Oncol. 2020;10:603661. doi: 10.3389/fonc.2020.603661

 

  1. Chen C, Gao H, Su X. Autophagy-related signaling pathways are involved in cancer (Review). Exp Ther Med. 2021;22(1):710. doi: 10.3892/etm.2021.10142

 

  1. Silva VR, Neves SP, Santos LS, Dias RB, Bezerra DP. Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers (Basel). 2020;12(11):3461. doi: 10.3390/cancers12113461

 

  1. Panaretakis T. Cisplatin-induced apoptosis and development of resistance are transcriptionally distinct processes. Cell Cycle. 2012;11(20):3723. doi: 10.4161/cc.22114

 

  1. Zhu Y, Zhang C, Yin Q, Xu W, Luo Y, Ou J. FOXO4 suppresses cisplatin resistance of triple-negative breast cancer by inhibiting autophagy. Am J Med Sci. 2025;369(2):252-263. doi: 10.1016/j.amjms.2024.08.012

 

  1. Lu H, Tong W, Jiang M, et al. Mitochondria-targeted multifunctional nanoprodrugs by inhibiting metabolic reprogramming for combating cisplatin-resistant lung cancer. ACS Nano. 2024;18(32):21156-21170. doi: 10.1021/acsnano.4c04024

 

  1. Tazzite A, Jouhadi H, Benider A, Nadifi S. BRCA mutational status is a promising predictive biomarker for platinum- based chemotherapy in triple-negative breast cancer. Curr Drug Targets. 2020;21(10):962-973. doi: 10.2174/1389450121666200203162541

 

  1. Varol A, Boulos JC, Jin C, Klauck SM, Zhitkovich A, Efferth T. Inhibition of MSH6 augments the antineoplastic efficacy of cisplatin in non-small cell lung cancer as autophagy modulator. Chem Biol Interact. 2024;402:111193. doi: 10.1016/j.cbi.2024.111193

 

  1. Ghazy S, Oktay L, Durdaği S. A novel algorithm for the virtual screening of extensive small molecule libraries against ERCC1/XPF protein-protein interaction for the identification of resistance-bypassing potential anticancer molecules. Turk J Biol. 2024;48(2):91-111. doi: 10.55730/1300-0152.2686

 

  1. Yue P, Han B, Zhao Y. Focus on the molecular mechanisms of cisplatin resistance based on multi-omics approaches. Mol Omics. 2023;19(4):297-307. doi: 10.1039/d2mo00220e

 

  1. Wang B, Zhang R, Wang Y, et al. Targeting Rab26 to conquer cisplatin-resistant lung cancer with self-assembled DNA nanomaterials. Biomacromolecules. 2023;24(5):2063-2074. doi: 10.1021/acs.biomac.2c01493

 

  1. Loehr A, Hussain A, Patnaik A, et al. Emergence of BRCA reversion mutations in patients with metastatic castration-resistant prostate cancer after treatment with rucaparib. Eur Urol. 2023;83(3):200-209. doi: 10.1016/j.eururo.2022.09.010

 

  1. Imyanitov E, Sokolenko A. Mechanisms of acquired resistance of BRCA1/2-driven tumors to platinum compounds and PARP inhibitors. World J Clin Oncol. 2021;12(7):544-556. doi: 10.5306/wjco.v12.i7.544

 

  1. Pettitt SJ, Frankum JR, Punta M, et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 2020;10(10):1475-1488. doi: 10.1158/2159-8290.CD-19-1485

 

  1. DeNicola GM, Karreth FA, Humpton TJ, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106-109. doi: 10.1038/nature10189

 

  1. Li D, Hong X, Zhao F, Ci X, Zhang S. Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int. 2021;21(1):116. doi: 10.1186/s12935-021-01822-1

 

  1. Telkoparan-Akillilar P, Panieri E, Cevik D, Suzen S, Saso L. Therapeutic targeting of the NRF2 signaling pathway in cancer. Molecules. 2021;26(5):1417. doi: 10.3390/molecules26051417

 

  1. He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis. 2020;41(4):405-416. doi: 10.1093/carcin/bgaa039

 

  1. Smolkova K, Miko E, Kovacs T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear factor erythroid 2-related factor 2 in regulating cancer metabolism. Antioxid Redox Signal. 2020;33(13):966-997. doi: 10.1089/ars.2020.8024

 

  1. Jasek-Gajda E, Jurkowska H, Jasińska M, Lis GJ. Targeting the MAPK/ERK and PI3K/AKT signaling pathways affects NRF2, Trx and GSH antioxidant systems in leukemia cells. Antioxidants (Basel). 2020;9(7):633. doi: 10.3390/antiox9070633

 

  1. Yang Y, Liu L, Tian Y, et al. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett. 2024;587:216659. doi: 10.1016/j.canlet.2024.216659

 

  1. Lin KY, Kraus WL. PARP inhibitors for cancer therapy. Cell. 2017;169(2):183. doi: 10.1016/j.cell.2017.03.034

 

  1. Huang YZ, Sang MY, Xi PW, et al. FANCI inhibition induces PARP1 redistribution to enhance the efficacy of PARP inhibitors in breast cancer. Cancer Res. 2024;84(20):3447-3463. doi: 10.1158/0008-5472.CAN-23-2738

 

  1. Li Y, Miao W, Yuan C, et al. PARP inhibitor boost the efficacy of photothermal therapy to TNBC through enhanced DNA damage and inhibited homologous recombination repair. Drug Deliv Transl Res. 2025;15(3):955-967. doi: 10.1007/s13346-024-01650-6

 

  1. Sakogawa K, Aoki Y, Misumi K, et al. Involvement of homologous recombination in the synergism between cisplatin and poly (ADP-ribose) polymerase inhibition. Cancer Sci. 2013;104(12):1593-1599. doi: 10.1111/cas.12281

 

  1. Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Was H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol. 2024;225:116277. doi: 10.1016/j.bcp.2024.116277

 

  1. Hassan AMIA, Zhao Y, Chen X, He C. Blockage of autophagy for cancer therapy: A comprehensive review. Int J Mol Sci. 2024;25(13):7459. doi: 10.3390/ijms25137459

 

  1. Wu Y, Wang A, Feng G, et al. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem. 2024;276:116688. doi: 10.1016/j.ejmech.2024.116688

 

  1. Hughes KS, Zhou J, Bao Y, Singh P, Wang J, Yin K. Natural language processing to facilitate breast cancer research and management. Breast J. 2020;26(1):92-99. doi: 10.1111/tbj.13718

 

  1. Hasan W, Simeon-Dubach D, Tumilasci V, Sebbel P, Orth S. Challenges and opportunities for collaboration between academic biobanks and industry: Results of an international survey of academic biobanks. Biopreserv Biobank. 2024. doi: 10.1089/bio.2023.0156

 

  1. Carmona J, Chavarria E, Donoghue K, et al. Cancer core Europe: Leveraging institutional synergies to advance oncology research and care globally. Cancer Discov. 2024;14(7):1147-1153. doi: 10.1158/2159-8290.CD-24-0377

 

  1. Huang J, Li J, Li Y, et al. Bibliometric analysis of breast cancer-related lymphedema research trends over the last 2 decades. Front Oncol. 2024;14:1360899. doi: 10.3389/fonc.2024.1360899

 

  1. Xie Y, Xiao D, Li D, et al. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol. 2024;14:1441222. doi: 10.3389/fonc.2024.1441222

 

  1. Rodler E, Sharma P, Barlow WE, et al. Cisplatin with veliparib or placebo in metastatic triple-negative breast cancer and BRCA mutation-associated breast cancer (S1416): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2023;24(2):162-174. doi: 10.1016/S1470-2045(22)00739-2

 

  1. Guney Eskiler G, Ozman Z, Haciefendi A, Cansaran- Duman D. Novel combination treatment of CDK 4/6 inhibitors with PARP inhibitors in triple negative breast cancer cells. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(5):1031-1041. doi: 10.1007/s00210-022-02375-4

 

  1. Macchini M, Centonze F, Peretti U, et al. Treatment opportunities and future perspectives for pancreatic cancer patients with germline BRCA1-2 pathogenic variants. Cancer Treat Rev. 2021;100:102262. doi: 10.1016/j.ctrv.2021.102262

 

  1. Qian L, Bai J, Huang Y, Zeebaree DQ, Saffari A, Zebari DA. Breast cancer diagnosis using evolving deep convolutional neural network based on hybrid extreme learning machine technique and improved chimp optimization algorithm. Biomed Signal Process Control. 2024;87(A):105492. doi: 10.1016/j.bspc.2023.105492

 

  1. Cao J, Zeebaree DQ, Chen Q, Zebari DA. Breast cancer diagnosis using hybrid AlexNet-ELM and chimp optimization algorithm evolved by Nelder-Mead simplex approach. Biomed Signal Process Control. 2023;85:105053. doi: 10.1016/j.bspc.2023.105053
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing