Construction of prognostic risk models and identification and verify cation of biomarkers related to lactic acid metabolism and carbohydrate metabolism in lung adenocarcinoma

Lung adenocarcinoma (LUAD) has a high incidence and poor prognosis. Carbohydrate and lactic acid metabolism drive tumor growth, highlighting the need to identify prognostic genes in these pathways for LUAD diagnosis and treatment. We conducted differentially expressed analysis in the Cancer Genome Atlas (TCGA)-LUAD, applied Spearman analysis to correlate carbohydrate and lactic acid metabolism genes and identified key model genes using weighted gene co-expression network analysis. Overlapping differential expression genes (DEGs), correlated genes, and key model genes yielded candidates. Hub genes were screened by molecular complex detection, prognostic genes by univariate Cox, and least absolute shrinkage and selection operator, constructing a risk model. TCGA-LUAD samples were stratified by median risk score. Finally, the prognostic genes’ impact on LUAD’s immune microenvironment was analyzed, and their expression in clinical samples was validated through real-time quantitative polymerase chain reaction. From 7,252 DEGs, 189 correlated genes, and 3,900 key model genes, 20 candidates emerged. Nine hub genes led to five prognostic genes: ADH1A, Alcohol dehydrogenase 1B (ADH1B), ALDOA, ENO1, and ACSS3. In addition, nine immune cells differed significantly between risk groups, with CD4 T, monocytes, and mast cells positively correlating with ADH1B. ADH1A, ADH1B, and ACSS3 were downregulated, contrasting ALDOA and ENO1. Consistent results were obtained by protein mapping. Eventually, ADH1A, ADH1B, ALDOA, and ENO1 expression trends in clinical samples were similarly consistent with the dataset. In summary, five prognostic genes related to carbohydrate and lactic acid metabolism (ADH1A, ADH1B, ALDOA, ENO1, and ACSS3) associated with LUAD have been identified. This model serves as an effective predictive tool and offers a new perspective for studying tumor metabolism.
- Chen Y, Tang L, Huang W, Zhang Y, Abisola FH, Li L. Identification and validation of a novel cuproptosis-related signature as a prognostic model for lung adenocarcinoma. Front Endocrinol (Lausanne). 2022;13:963220. doi: 10.3389/fendo.2022.963220
- Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244-285. doi: 10.1097/JTO.0b013e318206a221
- Nguyen TT, Lee HS, Burt BM, et al. A lepidic gene signature predicts patient prognosis and sensitivity to immunotherapy in lung adenocarcinoma. Genome Med. 2022;14(1):5. doi: 10.1186/s13073-021-01010-w
- Zhang L, Zhang Z, Yu Z. Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma. J Transl Med. 2019;17(1):423. doi: 10.1186/s12967-019-02173-2
- Seguin L, Durandy M, Feral CC. Lung adenocarcinoma tumor origin: A guide for personalized medicine. Cancers. 2022;14(7):1759. doi: 10.3390/cancers14071759
- Alizadeh J, Kavoosi M, Singh N, et al. Regulation of autophagy via carbohydrate and lipid metabolism in cancer. Cancers. 2023;15(8):2195. doi: 10.3390/cancers15082195
- Cui X, Zhao J, Li G, et al. Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma. Cancer Commun (Lond). 2023;43(12):1326-1353. doi: 10.1002/cac2.12502
- Chandel NS. Carbohydrate metabolism. Cold Spring Harbor Perspect Biol. 2021;13(1):a040568. doi: 10.1101/cshperspect.a040568
- Chang X, Liu X, Wang H, Yang X, Gu Y. Glycolysis in the progression of pancreatic cancer. Am J Cancer Res. 2022;12(2):861-872.
- Bannasch P. Modulation of carbohydrate metabolism during carcinogenesis. Cancer Detect Prev. 1986;9(3-4):243-249.
- Vaupel P, Schmidberger H, Mayer A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912-919. doi: 10.1080/09553002.2019.1589653
- San-Millan I, Brooks GA. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis. 2017;38(2):119-133. doi: 10.1093/carcin/bgw127
- Huang R, Zong X. Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit Rev Oncol Hematol. 2017;115:13-22. doi: 10.1016/j.critrevonc.2017.04.005
- Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2021;21(3):151-161. doi: 10.1038/s41577-020-0406-2
- Gu J, Zhou J, Chen Q, et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 2022;39(12):110986. doi: 10.1016/j.celrep.2022.110986
- Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev. 2022;68:81-92. doi: 10.1016/j.cytogfr.2022.11.001
- Chen XS, Li LY, Guan YD, Yang JM, Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin. 2016;37(8):1013-1019. doi: 10.1038/aps.2016.47
- Yang Y, Yang Y, Liu J, et al. Establishment and validation of a carbohydrate metabolism-related gene signature for prognostic model and immune response in acute myeloid leukemia. Front Immunol. 2022;13:1038570. doi: 10.3389/fimmu.2022.1038570
- Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8
- Ma X, Zhang L, Huang D, et al. Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis. J Magn Reson Imaging. 2019;49(4):1113-1121. doi: 10.1002/jmri.26287
- Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-287. doi: 10.1089/omi.2011.0118
- Wang S, Su W, Zhong C, et al. An Eight-CircRNA assessment model for predicting biochemical recurrence in prostate cancer. Front Cell Dev Biol. 2020;8:599494. doi: 10.3389/fcell.2020.599494
- Zhou RS, Zhang EX, Sun QF, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer. 2019;19(1):779. doi: 10.1186/s12885-019-5983-8
- Zheng Y, Wen Y, Cao H, et al. Global characterization of immune infiltration in clear cell renal cell carcinoma. Onco Targets Ther. 2021;14:2085-2100. doi: 10.2147/OTT.S282763
- Hanzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7. doi: 10.1186/1471-2105-14-7
- Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007
- Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550. doi: 10.1073/pnas.0506580102
- Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016;76(6):1381-1390. doi: 10.1158/0008-5472
- Cui Q, Peng L, Wei L, et al. Genetic variant repressing ADH1A expression confers susceptibility to esophageal squamous-cell carcinoma. Cancer Lett. 2018;421:43-50. doi: 10.1016/j.canlet.2017.12.020
- Ma J, Shi Y, Lu Q, Huang D. Inflammation-related gene ADH1A regulates the polarization of macrophage M1 and influences the malignant progression of gastric cancer. J Inflamm Res. 2024;17:4647-4665. doi: 10.2147/JIR.S452670
- Chen C, Guo S, Chai W, et al. A comprehensive genome-based analysis identifies the anti-cancerous role of the anoikis-related gene ADH1A in modulating the pathogenesis of breast cancer. Mol Genet Genom MGG. 2024;299(1):108. doi: 10.1007/s00438-024-02200-y
- Mao G, Mu Z, Wu D. Exosome-derived miR-2682-5p suppresses cell viability and migration by HDAC1-silence-mediated upregulation of ADH1A in non-small cell lung cancer. Hum Exp Toxicol. 2021;40(12_suppl):S318-S330. doi: 10.1177/09603271211041997
- Li YS, Jiang HC. Integrating molecular pathway with genome-wide association data for causality identification in breast cancer. Disco Oncol. 2024;15(1):254. doi: 10.1007/s12672-024-01125-7
- Yin D, Zhang Y, Li H, Cheng L. Association of TOP2A and ADH1B with lipid levels and prognosis in patients with lung adenocarcinoma and squamous cell carcinoma. Clin Respir J. 2023;17(12):1301-1315. doi: 10.1111/crj.13717
- Chida K, Oshi M, Roy AM, Sato T, Endo I, Takabe K. Pancreatic ductal adenocarcinoma with a high expression of alcohol dehydrogenase 1B is associated with less aggressive features and a favorable prognosis. Am J Cancer Res. 2023;13(8):3638-3649.
- Vasiukov G, Zou Y, Senosain MF, et al. Cancer-associated fibroblasts in early-stage lung adenocarcinoma correlate with tumor aggressiveness. Sci Rep. 2023;13(1):17604. doi: 10.1038/s41598-023-43296-3
- Wang L, Yuan H, Li W, et al. ACSS3 regulates the metabolic homeostasis of epithelial cells and alleviates pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis. 2024;1870(2):166960. doi: 10.1016/j.bbadis.2023.166960
- Chang WC, Cheng WC, Cheng BH, et al. Mitochondrial Acetyl-CoA synthetase 3 is biosignature of gastric cancer progression. Cancer Med. 2018;7(4):1240-1252. doi: 10.1002/cam4.1295
- Zhou L, Song Z, Hu J, et al. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Theranostics. 2021;11(2):841-860. doi: 10.7150/thno.49384
- Huang CK, Sun Y, Lv L, Ping Y. ENO1 and cancer. Mol Ther Oncolytics. 2022;24:288-298. doi: 10.1016/j.omto.2021.12.026
- Zhang T, Sun L, Hao Y, et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat Cancer. 2022;3(1):75-89. doi: 10.1038/s43018-021-00299-1
- Nie Q, Cao H, Yang J, Liu T, Wang B. Long non-coding RNA NMRAL2P promotes glycolysis and reduces ROS in head and neck tumors by interacting with the ENO1 protein and promoting GPX2 transcription. PeerJ. 2023;11:e16140. doi: 10.7717/peerj.16140
- Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84(6):1014-1020. doi: 10.1016/j.ygeno.2004.08.010
- Chang GC, Liu KJ, Hsieh CL, et al. Identification of alpha-enolase as an autoantigen in lung cancer: Its overexpression is associated with clinical outcomes. Clin Cancer Res. 2006;12(19):5746-5754. doi: 10.1158/1078-0432.CCR-06-0324
- He P, Naka T, Serada S, et al. Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer. Cancer Sci. 2007;98(8):1234-1240. doi: 10.1111/j.1349-7006.2007.00509.x
- Fu QF, Liu Y, Fan Y, et al. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol. 2015;8:22. doi: 10.1186/s13045-015-0117-5
- Zhang L, Wang H, Dong X. Diagnostic value of wth, migration, and invasion in non-small cell lung cancer through FAK-mediat. J Brasil Pneumol. 2018;44(1):18-23.
- Zhao J, Huang S, Tan D, et al. PGM1 and ENO1 promote the malignant progression of bladder cancer via comprehensive analysis of the m6A signature and tumor immune infiltration. J Oncol. 2022;2022:8581805. doi: 10.1155/2022/8581805
- Zhou J, Zhang S, Chen Z, He Z, Xu Y, Li Z. CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 2019;10(12):885. doi: 10.1038/s41419-019-2127-7
- Gao J, Zhao R, Xue Y, et al. Role of enolase-1 in response to hypoxia in breast cancer: exploring the mechanisms of action. Oncol Rep. 2013;29(4):1322-1332. doi: 10.3892/or.2013.2269
- Shu X, Cao KY, Liu HQ, et al. Alpha-enolase (ENO1), identified as an antigen to monoclonal antibody 12C7, promotes the self-renewal and malignant phenotype of lung cancer stem cells by AMPK/mTOR pathway. Stem cell Res Ther. 2021;12(1):119. doi: 10.1186/s13287-021-02160-9
- Kukita A, Yoshida MC, Fukushige S, et al. Molecular gene mapping of human aldolase A (ALDOA) gene to chromosome 16. Human genetics. 1987;76(1):20-26. doi: 10.1007/BF00283044
- Wan N, Wang N, Yu S, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nature Methods. 2022;19(7):854-864. doi: 10.1038/s41592-022-01523-1
- Lin J, Xia L, Oyang L, et al. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene. 2022;41(7):1024-1039. doi: 10.1038/s41388-021-02148-y
- Sun L, Lu T, Jiang L, et al. ALDOA contributes to colorectal tumorigenesis and metastasis by targeting YAP. Cell Death Discov. 2025;10(1):489. doi: 10.1038/s41420-024-02249-z
- Lu G, Shi W, Zhang Y. Prognostic implications and immune infiltration analysis of ALDOA in lung adenocarcinoma. Front Genet. 2021;12:721021. doi: 10.3389/fgene.2021.721021
- Kuang Q, Liang Y, Zhuo Y, et al. The ALDOA metabolism pathway as a potential target for regulation of prostate cancer proliferation. Onco Targets Ther. 2021;14:3353-3366. doi: 10.2147/OTT.S290284
- Chen H, Ye Z, Xu X, et al. ALDOA inhibits cell cycle arrest induced by DNA damage via the ATM-PLK1 pathway in pancreatic cancer cells. Cancer Cell Int. 2021;21(1):514. doi: 10.1186/s12935-021-02210-5
- Chang YC, Chiou J, Yang YF, et al. Therapeutic targeting of aldolase A interactions inhibits lung cancer metastasis and prolongs survival. Cancer Res. 2019;79(18):4754-4766. doi: 10.1158/0008-5472.CAN-18-4080
- Pelletier J, Thomas G, Volarević S. Ribosome biogenesis in cancer: New players and therapeutic avenues. Nat Rev Cancer. 2018;18(1):51-63. doi: 10.1038/nrc.2017.104
- Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome biogenesis: A Central player in cancer metastasis and therapeutic resistance. Cancer Res. 2022;82(13):2344-2353. doi: 10.1158/0008-5472.CAN-21-4087
- Schwarz JD, Lukassen S, Bhandare P, et al. The glycolytic enzyme ALDOA and the exon junction complex protein RBM8A are regulators of ribosomal biogenesis. Front Cell Dev Biol. 2022;10:954358. doi: 10.3389/fcell.2022.954358
- Zhu H, Swami U, Preet R, Zhang J. Harnessing DNA replication stress for novel cancer therapy. Genes. 2020;11(9):990. doi: 10.3390/genes11090990
- Zhu W, Li H, Yu Y, et al. Enolase-1 serves as a biomarker of diagnosis and prognosis in hepatocellular carcinoma patients. Cancer Manag Res. 2018;10:5735-5745. doi: 10.2147/CMAR.S182183
- Cancemi P, Buttacavoli M, Roz E, Feo S. Expression of alpha-enolase (ENO1), Myc promoter-binding protein-1 (MBP-1) and matrix metalloproteinases (MMP-2 and MMP-9) reflect the nature and aggressiveness of breast tumors. Int J Mol Sci. 2019;20(16):3952. doi: 10.3390/ijms20163952
- Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell. 2022;13(8):559-579. doi: 10.1007/s13238-021-00856-5
- Bowling EA, Wang JH, Gong F, et al. Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell. 2021;184(2):384-403.e321. doi: 10.1016/j.cell.2020.12.031
- Eymin B. Targeting the spliceosome machinery: A new therapeutic axis in cancer? Biochem Pharmacol. 2021;189:114039. doi: 10.1016/j.bcp.2020.114039
- Shen Y, Xu J, Pan X, et al. LncRNA KCNQ1OT1 sponges miR-34c-5p to promote osteosarcoma growth via ALDOA enhanced aerobic glycolysis. Cell Death Dis. 2020;11(4):278. doi: 10.1038/s41419-020-2485-1