ORIGINAL RESEARCH ARTICLE

Effects of oleuropein and hydroxytyrosol on brain renin-angiotensin system-regulating aminopeptidases in experimental glioma

María Jesús Ramírez-Expósito1 Cristina Cueto-Ureña1 María Pilar Carrera-González1 José Manuel Martínez-Martos1*
Show Less
1 Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
CP, 7943
Submitted: 18 December 2024 | Revised: 14 February 2025 | Accepted: 3 March 2025 | Published: 19 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Previous in vitro and in vivo studies have demonstrated that extra virgin olive oil polyphenols act against different pathologies, including several types of cancer such as glioma. Emerging therapies targeting the renin-angiotensin system (RAS) have shown therapeutic promise. Here we analyze the effects of the oral administration of oleuropein, hydroxytyrosol, and the mixture of both polyphenols in animals with gliomas to determine their effects on gliomagenesis and the regulatory proteolytic enzymes of the RAS of the aminopeptidase type, including the impact of sex differences. Gliomas were induced by the transplacental administration of N-ethyl-N-nitrosourea (ENU). Aminopeptidases were assayed fluorometrically using aminoacyl-ß-naphthylamides as substrates. Kaplan–Meier survival curves revealed that these treatments significantly improve survival rates, with notable sex differences. In addition, their effects on tumor number and volume showed sex differences. Regarding the RAS-regulating aminopeptidases, our results support the idea of an increased effect of angiotensin III (AngIII) on untreated animals. In contrast, the findings with polyphenol treatments allow us to infer a decrease in AngIII and an increase of angiotensin 1 – 7, also with sex differences. A putative role on glucose uptake facilitation mediated by insulin-regulated aminopeptidase is also hypothesized. Our results demonstrated that local RAS significantly participates in gliomagenesis induced by transplacental ENU administration. In summary, orally administered extra virgin olive oil polyphenols, mainly hydroxytyrosol, showed differential effects against glioma, acting through the RAS-regulating aminopeptidase activities, and such differences were further compounded by sex disparity.

Keywords
Glioma
Oleuropein
Hydroxytyrosol
Sex
Aspartyl aminopeptidase
Aminopeptidase A
Aminopeptidase N
Aminopeptidase B
Insulin-regulated aminopeptidase
Funding
This research was funded by JUNTA DE ANDALUCÍA (grant number CTS1029), CONSEJERÍA DE INNOVACIÓN, CIENCIA Y EMPRESA (grant number CVI09-4957M), UNIVERSIDAD DE JAÉN (grant number CTS1039_2021), and INSTITUTO DE ESTUDIOS GIENNENSES (grant number IEG09).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Carrera-González MP, Ramírez-Expósito MJ, Mayas MD, Martínez-Martos JM. Protective role of oleuropein and its metabolite hydroxytyrosol on cancer. Trends Food Sci Tech. 2013;31(2):92-99. doi: 10.1016/j.tifs.2013.03.003

 

  1. Massaro M, Scoditti E, Carluccio MA, De Caterina R. Nutraceuticals and prevention of atherosclerosis: Focus on omega-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovasc Ther. 2010;28(4):e13-e19. doi: 10.1111/j.1755-5922.2010.00211.x

 

  1. Pignatelli P, Ghiselli A, Buchetti B, et al. Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis. 2006;188(1):77-83. doi: 10.1016/j.atherosclerosis.2005.10.025

 

  1. Bonfiglio C, Reddavide R, Cisternino AM, Campanella A, Fontana L, Giannelli G. Protective effect of extra virgin olive oil on cancers, gastrointestinal cancers, and all-cause mortality: A competing risk analysis in a southern Italian cohort. Cancers (Basel). 2024;16(21):3575. doi: 10.3390/cancers16213575

 

  1. Gabbia D. Beneficial effects of tyrosol and oleocanthal from extra virgin olive oil on liver health: Insights into their mechanisms of action. Biology (Basel). 2024;13(10) doi: 10.3390/biology13100760

 

  1. Gonzalez-Rodriguez M, Ait Edjoudi D, Cordero-Barreal A, et al. Oleocanthal, an antioxidant phenolic compound in extra virgin olive oil (EVOO): A comprehensive systematic review of its potential in inflammation and cancer. Antioxidants (Basel). 2023;12(12):2112. doi: 10.3390/antiox12122112

 

  1. Infante R, Infante M, Pastore D, et al. An appraisal of the oleocanthal-rich extra virgin olive oil (EVOO) and its potential anticancer and neuroprotective properties. Int J Mol Sci. 2023;24(24):17323. doi: 10.3390/ijms242417323

 

  1. Marrero AD, Cardenas C, Castilla L, et al. Antiangiogenic potential of an olive oil extract: Insights from a proteomic study. J Agric Food Chem. 2024;72(23):13023-13038. doi: 10.1021/acs.jafc.3c08851

 

  1. Porcel-Pastrana F, Montero-Hidalgo AJ, G-García ME, et al. Cellular and molecular evidence of the synergistic antitumour effects of hydroxytyrosol and metformin in prostate cancer. Int J Mol Sci. 2025;26(3):2041. doi: 10.3390/ijms26031341

 

  1. Tarun MTI, Elsayed HE, Ebrahim HY, El Sayed KA. The olive oil phenolic S-(-)-oleocanthal suppresses colorectal cancer progression and recurrence by modulating SMYD2- EZH2 and c-MET activation. Nutrients. 2025;17(3):397. doi: 10.3390/nu17030397

 

  1. Cuffaro D, Bertolini A, Silva AM, et al. Comparative analysis on polyphenolic composition of different olive mill wastewater and related extra virgin olive oil extracts and evaluation of nutraceutical properties by cell-based studies. Foods. 2024;13(20):3312. doi: 10.3390/foods13203312

 

  1. Amiot MJ, Fleuriet A, Macheix JJ. Importance and evolution of phenolic-compounds in olive during growth and maturation. J Agr Food Chem. 1986;34(5):823-826. doi: 10.1021/jf00071a014

 

  1. Furneri PM, Marino A, Saija A, Uccella N, Bisignano G. In vitro antimycoplasmal activity of oleuropein. Int J Antimicrob Agents. 2002;20(4):293-296. doi: 10.1016/s0924-8579(02)00181-4

 

  1. Furneri PM, Piperno A, Sajia A, Bisignano G. Antimycoplasmal activity of hydroxytyrosol. Antimicrob Agents Chemother. 2004;48(12):4892-4894. doi: 10.1128/AAC.48.12.4892-4894.2004

 

  1. Serra A, Rubio L, Borras X, Macia A, Romero MP, Motilva MJ. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Mol Nutr Food Res. 2012;56(3):486-496. doi: 10.1002/mnfr.201100436

 

  1. Gallardo-Fernandez M, Garcia AR, Hornedo-Ortega R, Troncoso AM, Garcia-Parrilla MC, Brito MA. In vitro study of the blood-brain barrier transport of bioactives from Mediterranean foods. Food Funct. 2024;15(7):3420-3432. doi: 10.1039/d3fo04760a

 

  1. Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-inflammatory and neuroprotective polyphenols derived from the european olive tree, Olea europaea L., in Long COVID and other conditions involving cognitive impairment. Int J Mol Sci. 2024;25(20):11040. doi: 10.3390/ijms252011040

 

  1. Lamy S, Ben Saad A, Zgheib A, Annabi B. Olive oil compounds inhibit the paracrine regulation of TNF-alpha-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression. J Nutr Biochem. 2016;27:136-145. doi: 10.1016/j.jnutbio.2015.08.026

 

  1. Liu M, Wang J, Huang B, Chen A, Li X. Oleuropein inhibits the proliferation and invasion of glioma cells via suppression of the AKT signaling pathway. Oncol Rep. 2016;36(4): 2009-2016. doi: 10.3892/or.2016.4978

 

  1. Priore P, Gnoni A, Natali F, et al. Oleic acid and hydroxytyrosol inhibit cholesterol and fatty acid synthesis in C6 glioma cells. Oxid Med Cell Longev. 2017;2017:9076052. doi: 10.1155/2017/9076052

 

  1. Ramirez-Exposito MJ, Martinez-Martos JM. Anti-inflammatory and antitumor effects of hydroxytyrosol but not oleuropein on experimental glioma in vivo. A putative role for the renin-angiotensin system. Biomedicines. 2018;6(1):11. doi: 10.3390/biomedicines6010011

 

  1. Ramirez-Exposito MJ, Carrera-Gonzalez MP, Martinez- Martos JM. Sex differences exist in brain renin-angiotensin system-regulating aminopeptidase activities in transplacental ethyl-nitrosourea-induced gliomas. Brain Res Bull. 2021;168:1-7. doi: 10.1016/j.brainresbull.2020.12.008

 

  1. Ramirez-Exposito MJ, Carrera-Gonzalez MP, Mayas MD, Martinez-Martos JM. Gender differences in the antioxidant response of oral administration of hydroxytyrosol and oleuropein against N-ethyl-N-nitrosourea (ENU)-induced glioma. Food Res Int. 2021;140:110023. doi: 10.1016/j.foodres.2020.110023

 

  1. Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21(Suppl 5):v1-v100. doi: 10.1093/neuonc/noz150

 

  1. Filho AM, Znaor A, Sunguc C, et al. Cancers of the brain and central nervous system: Global patterns and trends in incidence. J Neurooncol. 2025. doi: 10.1007/s11060-025-04944-y

 

  1. Dixon S, O’Connor AT, Brooks-Noreiga C, Clark MA, Levy A, Castejon AM. Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: A review. Cancer Chemother Pharmacol. 2024;94(1):1-23. doi: 10.1007/s00280-024-04686-0

 

  1. Lozinski M, Lumbers ER, Bowden NA, et al. Upregulation of the renin-angiotensin system is associated with patient survival and the tumour microenvironment in glioblastoma. Cells. 2024;13(7):634. doi: 10.3390/cells13070634

 

  1. O’Rawe M, Wickremesekera AC, Pandey R, et al. Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: Results of a phase I clinical trial. J Clin Neurosci. 2022;95:48-54. doi:10.1016/j.jocn.2021.11.023

 

  1. Ouyang X, Xu C. Targeting the (pro)renin receptor in cancers: from signaling to pathophysiological effects. J Cancer Res Clin Oncol. 2023;149(6):2595-2605. doi: 10.1007/s00432-022-04373-8

 

  1. Perryman R, Renziehausen A, Shaye H, et al. Inhibition of the angiotensin II type 2 receptor AT(2)R is a novel therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A. 2022;119(32):e2116289119. doi: 10.1073/pnas.2116289119

 

  1. Kast RE, Boockvar JA, Bruning A, et al. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget. 2013;4(4):502-530. doi: 10.18632/oncotarget.969

 

  1. Kast RE, Karpel-Massler G, Halatsch ME. CUSP9 treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget. 2014;5(18):8052-8082. doi: 10.18632/oncotarget.2408

 

  1. Ursu R, Thomas L, Psimaras D, et al. Angiotensin II receptor blockers, steroids and radiotherapy in glioblastoma-a randomised multicentre trial (ASTER trial). An ANOCEF study. Eur J Cancer. 2019;109:129-136. doi: 10.1016/j.ejca.2018.12.025

 

  1. Mayas MD, Ramirez-Exposito MJ, Carrera MP, Cobo M, Martinez-Martos JM. Renin-angiotensin system-regulating aminopeptidases in tumor growth of rat C6 gliomas implanted at the subcutaneous region. Anticancer Res. 2012;32(9):3675-3682.

 

  1. Martínez-Martos JM, Mayas MD, Carrera P, et al. Phenolic compounds oleuropein and hydroxytyrosol exert differential effects on glioma development via antioxidant defense systems. J Funct Foods. 2014;11:221-234. doi: 10.1016/j.jff.2014.09.006

 

  1. Ramirez-Exposito MJ, Mayas MD, Carrera-Gonzalez MP, Martinez-Martos JM. Gender differences in the antioxidant response to oxidative stress in experimental brain tumors. Curr Cancer Drug Targets. 2019;19(8):641-654. doi: 10.2174/1568009618666181018162549

 

  1. Egami K, Murohara T, Shimada T, et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest. 2003;112(1):67-75. doi: 10.1172/JCI16645

 

  1. Arrieta O, Guevara P, Escobar E, Garcia-Navarrete R, Pineda B, Sotelo J. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer. 2005;92(7):1247-1252. doi: 10.1038/sj.bjc.6602483

 

  1. Arrieta O, Pineda-Olvera B, Guevara-Salazar P, et al. Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br J Cancer. 2008;99(1):160-166. doi: 10.1038/sj.bjc.6604431

 

  1. Arrieta O, Villarreal-Garza C, Vizcaino G, et al. Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumour Biol. 2015;36(7):5627-5634. doi: 10.1007/s13277-015-3235-3

 

  1. Rocken C, Rohl FW, Diebler E, et al. The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1206-1212. doi: 10.1158/1055-9965.EPI-05-0934

 

  1. Perdomo-Pantoja A, Mejia-Perez SI, Gomez-Flores-Ramos L, et al. Renin angiotensin system and its role in biomarkers and treatment in gliomas. J Neurooncol. 2018;138(1):1-15. doi: 10.1007/s11060-018-2789-5

 

  1. Ruiter R, Visser LE, Van Duijn CM, Stricker BH. The ACE insertion/deletion polymorphism and risk of cancer, a review and meta-analysis of the literature. Curr Cancer Drug Targets. 2011;11(4):421-430. doi: 10.2174/156800911795538147

 

  1. Lindberg H, Nielsen D, Jensen BV, Eriksen J, Skovsgaard T. Angiotensin converting enzyme inhibitors for cancer treatment? Acta Oncol. 2004;43(2):142152. doi: 10.1080/02841860310022346

 

  1. Rivera E, Arrieta O, Guevara P, Duarte-Rojo A, Sotelo J. AT1 receptor is present in glioma cells; its blockage reduces the growth of rat glioma. Br J Cancer. 2001;85(9):1396-1399. doi: 10.1054/bjoc.2001.2102

 

  1. Martinez JM, Ramirez MJ, Prieto I, Alba F, Ramirez M. Sex differences and in vitro effects of steroids on serum aminopeptidase activities. Peptides. 1998;19(9):1637-1640. doi: 10.1016/s0196-9781(98)00095-3

 

  1. Kenny AJ, O’Hare MJ, Gusterson BA. Cell-surface peptidases as modulators of growth and differentiation. Lancet. 1989;2(8666):785-787. doi: 10.1016/s0140-6736(89)90841-6

 

  1. King KA, Hua J, Torday JS, et al. CD10/neutral endopeptidase 24.11 regulates fetal lung growth and maturation in utero by potentiating endogenous bombesin-like peptides. J Clin Invest. 1993;91(5):1969-1973. doi: 10.1172/JCI116417

 

  1. Shipp MA, Tarr GE, Chen CY, et al. CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc Natl Acad Sci U S A. 1991;88(23):10662-10666. doi: 10.1073/pnas.88.23.10662

 

  1. Perez-Carro R, Cauli O, Lopez-Larrubia P. Multiparametric magnetic resonance in the assessment of the gender differences in a high-grade glioma rat model. EJNMMI Res. 2014;4(1):44. doi: 10.1186/s13550-014-0044-4

 

  1. Sui F, Sun W, Su X, et al. Gender-related differences in the association between concomitant amplification of AIB1 and HER2 and clinical outcomes in glioma patients. Pathol Res Pract. 2018;214(9):1253-1259. doi: 10.1016/j.prp.2018.06.013

 

  1. Manna C, D’Angelo S, Migliardi V, et al. Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J Agric Food Chem. 2002;50(22): 6521-6526. doi: 10.1021/jf020565

 

  1. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1-2):37-56. doi: 10.1023/b: mcbi.0000049134.69131.89

 

  1. Li S, Han Z, Ma Y, et al. Hydroxytyrosol inhibits cholangiocarcinoma tumor growth: An in vivo and in vitro study. Oncol Rep. 2014;31(1):145-152. doi: 10.3892/or.2013.2853

 

  1. Zhao B, Ma Y, Xu Z, et al. Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways. Cancer Lett. 2014;347:79-87.

 

  1. Dominska K, Piastowska-Ciesielska AW, Lachowicz- Ochedalska A, Ochedalski T. Similarities and differences between effects of angiotensin III and angiotensin II on human prostate cancer cell migration and proliferation. Peptides. 2012;37(2):200-206. doi: 10.1016/j.peptides.2012.07.022

 

  1. Martinez-Martos JM, del Pilar Carrera-Gonzalez M, Duenas B, Mayas MD, Garcia MJ, Ramirez-Exposito MJ. Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer. Breast. 2011;20(5):444-447. doi: 10.1016/j.breast.2011.04.008

 

  1. Teranishi J, Ishiguro H, Hoshino K, Noguchi K, Kubota Y, Uemura H. Evaluation of role of angiotensin III and aminopeptidases in prostate cancer cells. Prostate. 2008;68(15):1666-1673. doi: 10.1002/pros.20835

 

  1. Uemura H, Ishiguro H, Nakaigawa N, et al. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: A possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther. 2003;2(11):1139-1147.

 

  1. Harding JW, Felix D. Angiotensin-sensitive neurons in the rat paraventricular nucleus: Relative potencies of angiotensin II and angiotensin III. Brain Res. 1987;410(1):130-134. doi: 10.1016/s0006-8993(87)80033-1

 

  1. Marchio S, Lahdenranta J, Schlingemann RO, et al. Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell. 2004;5(2):151-162. doi: 10.1016/s1535-6108(04)00025-x

 

  1. Liu B, Liu Y, Jiang Y. Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation by inhibiting angiotensin-(1-7)/Mas signaling. Oncol Rep. 2015;33(5):2583-2591. doi: 10.3892/or.2015.3813

 

  1. Ni L, Feng Y, Wan H, et al. Angiotensin-(1-7) inhibits the migration and invasion of A549 human lung adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways. Oncol Rep. 2012;27(3):783-790. doi: 10.3892/or.2011.1554

 

  1. Wegman-Ostrosky T, Soto-Reyes E, Vidal-Millan S, Sanchez-Corona J. The renin-angiotensin system meets the hallmarks of cancer. J Renin Angiotensin Aldosterone Syst. 2015;16(2):227-233. doi: 10.1177/1470320313496858

 

  1. Juillerat-Jeanneret L, Aubert JD, Leuenberger P. Peptidases in human bronchoalveolar lining fluid, macrophages, and epithelial cells: dipeptidyl (amino)peptidase IV, aminopeptidase N, and dipeptidyl (carboxy)peptidase (angiotensin-converting enzyme). J Lab Clin Med. 1997;130(6):603-614. doi: 10.1016/s0022-2143(97)90110-4

 

  1. Juillerat-Jeanneret L, Lohm S, Hamou MF, Pinet F. Regulation of aminopeptidase A in human brain tumor vasculature: Evidence for a role of transforming growth factor-beta. Lab Invest. 2000;80(6):973-980. doi: 10.1038/labinvest.3780100

 

  1. Ohnishi A, Watanabe J, Tsujimoto M. Importance of Tyr409 and Tyr414 in constructing the substrate pocket of human aminopeptidase B. Mol Cell Biochem. 2020;469(1-2):1-8. doi: 10.1007/s11010-020-03722-w

 

  1. Fernando RN, Albiston AL, Chai SY. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus--potential role in modulation of glucose uptake in neurones? Eur J Neurosci. 2008;28(3): 588-598. doi: 10.1111/j.1460-9568.2008.06347.x

 

  1. Keller SR. The insulin-regulated aminopeptidase: a companion and regulator of GLUT4. Front Biosci. 2003;8:S410-S420. doi: 10.2741/1078

 

  1. Keller SR, Davis AC, Clairmont KB. Mice deficient in the insulin-regulated membrane aminopeptidase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis. J Biol Chem. 2002;277(20):17677-17686. doi: 10.1074/jbc.M202037200

 

  1. Nagamatsu S, Sawa H, Wakizaka A, Hoshino T. Expression of facilitative glucose transporter isoforms in human brain tumors. J Neurochem. 1993;61(6):2048-2053. doi: 10.1111/j.1471-4159.1993.tb07441.x

 

  1. Azzalin A, Nato G, Parmigiani E, Garello F, Buffo A, Magrassi L. Inhibitors of GLUT/SLC2A enhance the action of BCNU and temozolomide against high-grade gliomas. Neoplasia. 2017;19(4):364-373. doi: 10.1016/j.neo.2017.02.009

 

Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing