Reevaluating cancer stem cells and polyploid giant cancer cells from the evolutionary cancer cell biology perspective
According to the principles of Evolutionary Cancer Cell Biology (ECCB), cancer stem cells (CSCs) do not derive from normal stem cells; rather, they originate from a distinct functional phenotype of germline cells characterized by asymmetric cell division (ACD). This phenotype proliferates through ACD, producing self-renewing cells alongside non-proliferating daughter cells with CSC qualities. ECCB posits that CSCs do not proliferate. Similar to protists, there exists a close reciprocal relationship between sister cells that collectively form a germline and stem cells. These sister cells perform complementary roles: proliferating cancer germline cells generate stem cells, whereas the non-proliferating CSCs give rise to progenitor cells for the formation of new germline clones. ECCB distinguishes between primary CSCs, which are associated with carcinogenesis and primary tumors, and secondary CSCs, which are linked to metastases. This unicellular stem cell system is homologous to that of parasitic protists, such as amebae. Both CSCs and amebae stem cells are produced by an oxygen-sensitive germline and are vulnerable to damage when oxygen levels exceed 6.0% (germline hyperoxia), as elevated oxygen concentrations can harm the germline genome. Germline cells that lose their stemness quality continue to cycle through defective symmetric cell divisions (DSCD). However, to restore functionality, the DSCD genome must be repaired through hyperpolyploidization. This process occurs in native polyploid giant cancer cells, which are homologous to the multinucleated genome repair structures found in protists.
- Bisht S, Nigam M, Kunjwal SS, Sergey P, Mishra AP, Sharifi- Rad J. Cancer stem cells: From an insight into the basics to recent advances and therapeutic targeting. Stem Cells Int. 2022;2022:9653244. doi: 10.1155/2022/9653244
- Niculescu VF. Understanding cancer from an evolutionary perspective: High-risk reprogramming of genome-damaged stem cells. Acad Med. 2024;2. doi: 10.20935/AcadMed6168
- Hayat MA, editor. Stem Cells and Cancer Stem Cells: Therapeutic Applications in Disease and Injury. Vol. 9. Berlin: Springer; 2013.
- Rossi F, Noren H, Jove R, et al. Differences and similarities between cancer and somatic stem cells: Therapeutic implications. Stem Cell Res Ther. 2020;11:489. doi: 10.1186/s13287-020-02018-6
- Nimmakayala RK, Batra SK, Ponnusamy MP. Unraveling the journey of cancer stem cells from origin to metastasis. Biochim Biophys Acta Rev Cancer. 2019;1871:50-63. doi: 10.1016/j.bbcan.2018.10.006
- Rycaj K, Tang DG. Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Res. 2015;75(19):4003-4011. doi: 10.1158/0008-5472.CAN-15-0798
- Shah M, Allegrucci C. Stem cell plasticity in development and cancer: Epigenetic origin of cancer stem cells. Subcell Biochem. 2013;61:545-565. doi: 10.1007/978-94-007-4525-4_24
- Tweedell KS. The adaptability of somatic stem cells: A review. J Stem Cells Regen Med. 2017;13(2):3-13. doi: 10.46582/jsrm.1301002
- Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001;414(6859):98-104. doi: 10.1038/35102160
- Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004;51(2):1-28. doi: 10.1016/j.critrevonc.2004.04.007
- Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075-1079. doi: 10.1038/nature04957
- Spillane JB, Henderson MA. Cancer stem cells: A review. ANZ J Surg. 2007;77(6):464-468. doi: 10.1111/j.1445-2197.2007.04096.x
- Niculescu VF, Niculescu ER. The enigma of cancer polyploidy as deciphered by evolutionary cancer cell biology (ECCB). Acad Med. 2024;1(2).
- Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell. 2024;31(5):617-639. doi: 10.1016/j.stem.2024.04.004
- Niculescu VF. aCLS cancers: Genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle. Gene. 2020;726:144174. doi: 10.1016/j.gene.2019.144174
- Niculescu VF. Growth of Entamoeba invadens in sediments with metabolically repressed bacteria leads to multicellularity and redefinition of the amoebic cell system. Roum Arch Microbiol Immunol. 2013;72(2):25-48.
- Niculescu VF. The stem cell biology of the protist pathogen Entamoeba invadens in the context of eukaryotic stem cell evolution. Stem Cell Biol Res. 2015. doi: 10.7243/2054-717X-2-2
- Krishnan D, Ghosh SK. Cellular events of multinucleated giant cells formation during the encystation of Entamoeba invadens. Front Cell Infect Microbiol. 2018;31(8):262. doi: 10.3389/fcimb.2018.00262
- Mukherjee C, Clark CG, Lohia A. Entamoeba shows reversible variation in ploidy under different growth conditions and between life cycle phases. PLoS Negl Trop Dis. 2008;2:e281. doi: 10.1371/journal.pntd.0000281
- Mukherjee C, Majumder S, Lohia A. Inter-cellular variation in DNA content of Entamoeba histolytica originates from temporal and spatial uncoupling of cytokinesis from the nuclear cycle. PLoS Negl Trop Dis. 2009;3(4):e409. doi: 10.1371/journal.pntd.0000409
- Hazra S, Kalyan Dinda S, Kumar Mondal N, et al. Giant cells: Multiple cells unite to survive. Front Cell Infect Microbiol. 2023;13:1220589. doi: 10.3389/fcimb.2023.1220589
- Niculescu VF. The cell system of Giardia lamblia in the light of the protist stem cell biology. Stem Cell Biol Res. 2014;1:3. doi: 10.7243/2054-717X-1-3
- Niculescu VF. Evidence for asymmetric cell fate and hypoxia induced differentiation in the facultative pathogen protist Colpoda cucullus. Microbiol Discov. 2014;2:3. doi: 10.7243/2052-6180-2-3
- Salmina K, Huna A, Kalejs M, Pjanova D, Scherthan H, Cragg MS, Erenpreisa J, et al. The cancer aneuploidy paradox: In the light of evolution. Genes (Basel). 2019;10:83. doi: 10.3390/genes10020083
- Illidge T, Cragg M, Fringe B, Olive P, Erenpreisa JE. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int. 2000;24:621e33. doi: 10.1006/cbir.2000.0557
- Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM. Endo-polyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci. 2003;11:4095e106. doi: 10.1242/jcs.00740
- Chen Q, Zou J, He Y, et al. A narrative review of circulating tumor cells clusters: A key morphology of cancer cells in circulation promote hematogenous metastasis. Front. Oncol. 2022;12:944487. doi: 10.3389/fonc.2022.944487
- Gema MB, Héctor P, Patricia M, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4(11):1591-613. doi: 10.1038/nprot.2009.152
- Yang J, Antin P, Berx G, et al. Author correction: Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2021;22(12):834. doi: 10.1038/s41580-021-00428-9
- Hapach LA, Carey SP, Schwager SC, et al. Phenotypic heterogeneity and metastasis of breast cancer cells. Cancer Res. 2021;81(13):3649-3663. doi: 10.1158/0008-5472.CAN-20-1799
- Derynck R, Turley S, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18(2):9-34. doi: 10.1038/s41571-020-0403-1
- Aceto N, Bardia A, Miyamoto D, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110-1122. doi: 10.1016/j.cell.2014
- Amintas S, Bedel A, Moreau-Gaudry F, et al. Circulating tumor cell clusters: United we stand divided we fall. Int J Mol Sci Int J Mol Sci. 2020;21(7):2653. doi: 10.3390/ijms21072653 07.013
- Murlidhar V, Reddy R, Fouladdel S, Zhao L, et al. Poor prognosis indicated by venous circulating tumor cell clusters in early-stage lung cancers. Cancer Res. 2017;77(18):5194-5206. doi: 10.1158/0008-5472.CAN-16-2072
- Aceto N. Bring along your friends: Homotypic and heterotypic circulating tumor cell clustering to accelerate metastasis. BioMed J. 2020;43(2):18-23. doi: 10.1016/j.bj.2019.11.002
- Vetter M, Landin J, Szczerba BM, et al. Denosumab treatment is associated with the absence of circulating tumor cells in patients with breast cancer. Breast Cancer Res. 2018;20(2):141. doi: 10.1186/s13058-018-1067-y
- Ting D, Wittner B, Ligorio M, et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014;8(6):1905-1918. doi: 10.1016/j.celrep.2014.08.029
- Niculescu VF. Introduction to Evolutionary Cancer Cell Biology (ECCB) and Ancestral Cancer Genomics [Preprints]; 2023. doi: 10.20944/preprints202311.0383.v1
- Erenpreisa J, Salmina K, Anatskaya O, Cragg MS. Paradoxes of cancer: Survival at the brink. Semin Cancer Biol. 2022;81:119-131. doi: 10.1016/j.semcancer.2020.12.009
- Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, et al. Spatial-temporal genome regulation in stress-response and cell-fate change. Int J Mol Sci. 2023;24(3):2658. doi: 10.3390/ijms24032658
- Lopez-Sánchez LM, Jimenez C, Valverde A, et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS One. 2014;9(6):e99143. doi: 10.1371/journal.pone.0099143
- Liu Y, Shi Y, Wu M, et al. Hypoxia-induced polypoid giant cancer cells in glioma promote the transformation of tumor-associated macrophages to a tumor-supportive phenotype. CNS Neurosci Ther. 2022;28(9):1326-1338. doi: 10.1111/cns.13892.
- Liu Zhang S, Zhang D, Yang Z, Zhang X. Tumor budding, micropapillary pattern, and polyploidy giant cancer cells in colorectal cancer: Current status and future prospects. Stem Cells Int. 2016;2016:4810734. doi: 10.1155/2016/4810734
- Casotti-Correia M, Louro- Drumond I, Dummer-Meira D, editors. PGCC: Uma Resposta Complexa do Câncer. Parana: Atena Editura; 2023. doi: 10.22533/at.ed.740231309
- Niu N, Zhang J, Zhang N, et al. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis. 2016;5:e281. doi: 10.1038/oncsis.2016.75
- Amend SR, Torga G, Lin KC, et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate. 2019;79(13):1489-1497. doi: 10.1002/pros.23877
- Mirzayans R, Andrais B, Murray D. Roles of polyploid/ multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers (Basel). 2018;10(4):118. doi: 10.3390/cancers10040118
- Fei F, Zhang D, Yang Z, et al. The number of polyploid giant cancer cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis in human breast cancer. J Exp Clin Cancer Res. 2015;34:158. doi: 10.1186/s13046-015-0277-8
- Zhang D, Yang X, Yang Z, et al. Daughter cells and erythroid cells budding from PGCCs and their clinicopathological significances in colorectal cancer. J Cancer. 2017;8(3):469-478. doi: 10.7150/jca.17012
- Saini G, Joshi S, Garlapati C, et al. Polyploid giant cancer cell characterization: New frontiers in predicting response to chemotherapy in breast cancer. Semin Cancer Biol. 2022;81:220-231. doi: 10.1016/j.semcancer.2021.03.017
- Ali AM, BenMohamed F, Decina A, et al. Circulating cancer giant cells with unique characteristics frequently found in patients with myelodysplastic syndromes (MDS). Med Oncol. 2023;40(7):204. doi: 10.1007/s12032-023-02064-z
- Song Y, Zhao Y, Deng Z, Zhao R, Huang Q. Stress-induced polyploid giant cancer cells: Unique way of formation and non-negligible characteristics. Front Oncol. 2021;11:724781. doi: 10.3389/fonc.2021.724781
- Xuan B, Ghosh D, Dawson MR. Contributions of the distinct biophysical phenotype of polyploidal giant cancer cells to cancer progression. Semin Cancer Biol. 2022;81:64-72. doi: 10.1016/j.semcancer.2021.05.014
- White-Gilbertson S, Voelkel-Johnson C. Giants and monsters: Unexpected characters in the story of cancer recurrence. Adv Cancer Res. 2020;148:201-232. doi: 10.1016/bs.acr.2020.03.001
- Niculescu VF. Carcinogenesis: Recent insights in protist stem cell biology lead to a better understanding of atavistic mechanisms implied in cancer developent. MOJ Tumor Res. 2018;1(2):00004. doi: 10.15406/mojtr.2018.01.00004
- Niculescu VF. The cancer stem cell family: Atavistic origin and tumorigenic development. MOJ Tumor Res. 2018;1(2):70-73. doi: 10.15406/mojtr.2018.01.00015
- Niculescu VF. Cancer stem cells and the unicellular life cycle of cancer. Nov Approch Can Study. NACS. 2019;3(3). doi: 10.31031/NACS.2019.03.000565
- Niculescu VF. The reproductive life cycle of cancer: Hypotheses of cell of origin, TP53 drivers and stem cell conversions in the light of the atavistic cancer cell theory. Med Hypotheses. 2019;123:19-23. doi: 10.1016/j.mehy.2018.12.006
- Huang S. Reprogramming cell fates: Reconciling rarity with robustness. Bioessays. 2009;31:546-560. doi: 10.1002/bies.200800189
- Domazet-Lošo T, Tautz D. An ancient evolutionary origin of genes associated with human genetic diseases. Mol Biol Evol. 2008;25:2699-2707. doi: 10.1093/molbev/msn214
- Domazet-Loso T, Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 2010;8:66. doi: 10.1186/1741-7007-8-66
- Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc Natl Acad Sci U S A. 2017;114:6406–6411. doi: 10.1073/pnas.1617743114
- Trigos AS, Pearson RB, Papenfuss AT, Goode DL. How the evolution of multicellularity set the stage for cancer. Br J Cancer. 2018;118:145-152. doi: 10.1038/bjc.2017.398
- Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife. 2019;8:e40947. doi: 10.7554/eLife.40947
- Lineweaver CH, Davies P. Comparison of the atavistic model of cancer to somatic mutation theory: Phylostratigraphic analyses support the atavistic model. In: Gerstman BS, editor. The Physics of Cancer: Research Advances. Singapore: World Scientific; 2020. p. 243-261. doi: 10.1142/9789811223495_0012
- Erenpreisa J, Giuliani A. Resolution of complex issues in genome regulation and cancer requires non-linear and network-based thermodynamics. Int J Mol Sci. 2019;21:240. doi: 10.3390/ijms21010240
- Erenpreisa J, Salmina K, Anatskaya O, Alexander Vinogradov A, Cragg MS. The enigma of cancer resistance to treatment. Organisms. 2022;5(2):75. doi: 10.13133/2532-5876/17613
- Vinogradov AE, Anatskaya OV. Systemic alterations of cancer cells and their boost by polyploidization: Unicellular attractor (UCA) model. Int J Mol Sci. 2023;24:6196. doi: 10.3390/ijms24076196
- Craig CF. Studies upon the amebae in the intestine of man. J Infect Dis. 1908;5(3):324-377. doi: 10.1093/infdis/5.3.324
- Sundaram M, Guernsey DL, Rajaraman MM, Rajaraman R. Neosis: A novel type of cell division in cancer. Cancer Biol Ther. 2004;3:207-218. doi: 10.4161/cbt.3.2.663
- Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR. Neosis-a parasexual somatic reduction division in Cancer. Int J Hum Genet. 2007;7:29-48. doi: 10.1080/09723757.2007.11885983
- Niculescu VF. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes Dis. 2022;9:1234-1247. doi: 10.1016/j.gendis.2022.03.010