ORIGINAL RESEARCH ARTICLE

MiR-381-3p/TET3 axis promotes cervical cancer: A bioinformatic integrative analysis

Hilda Jiménez Wences1,2† Pedro Antonio Ávila López3† Gabriela Elizabeth Campos Viguri1,2 Ana Elvira Zacapala Gómez4 Julio Ortíz Ortíz4 Verónica Antonio Vejar4 Francisco Israel Torres Rojas4 Eric Genaro Salmerón Bárcenas3*
Show Less
1 Clinical Research Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
2 Biomolecule Research Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
3 Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-I.P.N.) City, Mexico
4 Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
CP 2024, 6(3), 3884
Submitted: 6 June 2024 | Accepted: 5 August 2024 | Published: 12 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cervical cancer (CC) is a global public health problem. Epigenetic factors, such as microRNAs, play a key role in the development of CC. Although a previous study reported that miR-381-3p inhibits CC by downregulating fibroblast growth factor 7, its role in CC remains largely unknown. This study aimed to fill the gap by analyzing the role of miR-381-3p in CC. Expression analysis was performed using databases including The Cancer Genome Atlas, Gene Expression Omnibus, and the Human Protein Atlas. Receiver operating characteristics and Kaplan–Meier curves were plotted using GraphPad Prism and Kaplan–Meier Plotter databases. Target messenger RNAs were identified using the miRDB and miRPathDB databases. Kyoto Encyclopedia of Genes and Genomes, Gene Ontology Biological Process, and Gene Set Enrichment Analysis were performed using Enrichr and WebGestalt databases. Mutation analysis was conducted using the cBioPortal database. In this study, we found that miR-381-3p expression is low in CC. Moreover, we identified a total of 1,191 potential targets of miR-381-3p that may be involved in key signaling pathways in this cancer. Interestingly, our results identified ten-eleven translocation 3 (TET3) as a potential target, with evidence suggesting that TET3 expression is increased in CC. This increase in TET3 expression may be useful as a diagnostic and prognostic biomarker. In addition, four mutations were identified in the TET3 protein. TET3 expression increases in patients with International federation of gynecology and obstetrics stage II CC and in those with lymph node metastasis. Mechanistically, TET3 expression may be induced by a gain in copy number, human papillomavirus infection, aberrant methylation, and activation of the transcription factor activator protein 2α. Finally, we identified 145 genes that are regulated by TET3 in CC, which are involved in key pathways and biological processes associated with CC, such as the cell cycle, DNA replication, mitogen-activated protein kinase signaling pathway, and basal transcription factors. In conclusion, we identified the miR-381-3p/TET3 axis as a key player in the carcinogenic process of CC.

Keywords
miR-381-3p
Ten-eleven translocation 3
Cervical cancer
Bioinformatic analysis
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229-263. doi: 10.3322/caac.21834

 

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33. doi: 10.3322/caac.21708

 

  1. Bhat D. The “Why and How” of cervical cancers and genital HPV infection. Cytojournal. 2022;19:22. doi: 10.25259/CMAS_03_03_2021

 

  1. Chatterjee S, Gupta D, Caputo TA, Holcomb K. Disparities in gynecological malignancies. Front Oncol. 2016;6:36. doi: 10.3389/fonc.2016.00036

 

  1. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12-19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F

 

  1. Causin RL, Freitas AJA, Trovo Hidalgo Filho CM, Reis RD, Reis RM, Marques MMC. A systematic review of MicroRNAs involved in cervical cancer progression. Cells. 2021;10(3):668. doi: 10.3390/cells10030668

 

  1. Zhu H, Tian M, Wang D, He J, Xu T. DNA methylation and hydroxymethylation in cervical cancer: Diagnosis, prognosis and treatment. Front Genet. 2020;11:347. doi: 10.3389/fgene.2020.00347

 

  1. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi: 10.3389/fendo.2018.00402

 

  1. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451-5465. doi: 10.1002/jcp.27486

 

  1. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-38. doi: 10.1038/npp.2012.112

 

  1. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196(2):261-282. doi: 10.1016/0022-2836(87)90689-9

 

  1. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5):a019133. doi: 10.1101/cshperspect.a019133

 

  1. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457-466. doi: 10.1038/ng1990

 

  1. Feng C, Dong J, Chang W, Cui M, Xu T. The progress of methylation regulation in gene expression of cervical cancer. Int J Genomics. 2018;2018:8260652. doi: 10.1155/2018/8260652

 

  1. Huang Y, Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 2014;30(10):464-474. doi: 10.1016/j.tig.2014.07.005

 

  1. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930-935. doi: 10.1126/science.1170116

 

  1. Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300-1303. doi: 10.1126/science.1210597

 

  1. He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303-1307. doi: 10.1126/science.1210944

 

  1. Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286(41):35334-35338. doi: 10.1074/jbc.C111.284620

 

  1. Weber AR, Krawczyk C, Robertson AB, et al. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016;7:10806. doi: 10.1038/ncomms10806

 

  1. Zhang L, Lu X, Lu J, et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol. 2012;8(4):328-330. doi: 10.1038/nchembio.914

 

  1. Cairns RA, Mak TW. Oncogenic isocitrate dehydrogenase mutations: Mechanisms, models, and clinical opportunities. Cancer Discov. 2013;3(7):730-741. doi: 10.1158/2159-8290.CD-13-0083

 

  1. Shang A, Zhou C, Bian G, et al. miR-381-3p restrains cervical cancer progression by downregulating FGF7. J Cell Biochem. 2019;120(1):778-789. doi: 10.1002/jcb.27438

 

  1. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991-995. doi: 10.1093/nar/gks1193

 

  1. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419

 

  1. Pan CY, Lin WC. miR-TV: An interactive microRNA target viewer for microRNA and target gene expression interrogation for human cancer studies. Database (Oxford). 2020;2020:baz148. doi: 10.1093/database/baz148

 

  1. Tang Z, Li C, Kang B, Gao G, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-W102. doi: 10.1093/nar/gkx247

 

  1. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi: 10.1126/scisignal.2004088

 

  1. Gao D, Zhang Y, Zhu M, Liu S, Wang X. miRNA expression profiles of HPV-infected patients with cervical cancer in the uyghur population in China. PLoS One. 2016;11(10):e0164701. doi: 10.1371/journal.pone.0164701

 

  1. Zhai Y, Kuick R, Nan B, et al. Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res. 2007;67(21):10163-10172. doi: 10.1158/0008-5472.CAN-07-2056

 

  1. Noordhuis MG, Fehrmann RS, Wisman GB, et al. Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res. 2011;17(6):1317-1330. doi: 10.1158/1078-0432.CCR-10-2320

 

  1. Nahm FS. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J Anesthesiol. 2022;75(1):25-36. doi: 10.4097/kja.21209

 

  1. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32-35. doi: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3

 

  1. Nagy A, Lanczky A, Menyhart O, Gyorffy B. Author Correction: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8(1):11515. doi: 10.1038/s41598-018-29514-3

 

  1. Chen Y, Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D131. doi: 10.1093/nar/gkz757

 

  1. Kehl T, Kern F, Backes C, et al. miRPathDB 2.0: A novel release of the miRNA pathway dictionary database. Nucleic Acids Res. 2019;48(D1):D142-D147. doi: 10.1093/nar/gkz1022

 

  1. Meylan P, Dreos R, Ambrosini G, Groux R, Bucher P. EPD in 2020: Enhanced data visualization and extension to ncRNA promoters. Nucleic Acids Res. 2020;48(D1):D65-D69. doi: 10.1093/nar/gkz1014

 

  1. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784-3788. doi: 10.1093/nar/gkg563

 

  1. Li LC, Dahiya R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427-1431. doi: 10.1093/bioinformatics/18.11.1427

 

  1. Xing J, Zhai R, Wang C, et al. DiseaseMeth version 3.0: A major expansion and update of the human disease methylation database. Nucleic Acids Res. 2022;50(D1):D1208-D1215. doi: 10.1093/nar/gkab1088

 

  1. Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: A web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10(3):277-288. doi: 10.2217/epi-2017-0118

 

  1. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: Detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18(2):333-334. doi: 10.1093/bioinformatics/18.2.333

 

  1. Chen EY, Tan CM, Kou Y, et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. doi: 10.1186/1471-2105-14-128

 

  1. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199-W205. doi: 10.1093/nar/gkz401

 

  1. Zacapala-Gomez AE, Mendoza-Catalan MA, Antonio-Vejar V, et al. TET enzymes and 5hmC epigenetic mark: New key players in carcinogenesis and progression in gynecological cancers. Eur Rev Med Pharmacol Sci. 2024;28(3):1123-1134. doi: 10.26355/eurrev_202402_35349

 

  1. Bronowicka-Klys DE, Roszak A, Pawlik P, Sajdak S, Sowinska A, Jagodzinski PP. Transcript levels of ten-eleven translocation type 1-3 in cervical cancer and non-cancerous cervical tissues. Oncol Lett. 2017;13(5):3921-3927. doi: 10.3892/ol.2017.5930

 

  1. Zhang LY, Han CS, Li PL, Zhang XC. 5-Hydroxymethylcytosine expression is associated with poor survival in cervical squamous cell carcinoma. Jpn J Clin Oncol. 2016;46(5):427-434. doi: 10.1093/jjco/hyw002

 

  1. Ye Z, Jiang Y, Wu J. DNMT3B attenuated the inhibition of TET3 on epithelial-mesenchymal transition in TGF-beta1- induced ovarian cancer by methylating the TET3 promoter. Reprod Biol. 2022;22(4):100701. doi: 10.1016/j.repbio.2022.100701

 

  1. Gong F, Guo Y, Niu Y, et al. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Oncotarget. 2017;8(1):315-328. doi: 10.18632/oncotarget.13324

 

  1. Jin M, Wang L, Zheng T, Yu J, Sheng R, Zhu H. MiR-195-3p inhibits cell proliferation in cervical cancer by targeting BCDIN3D. J Reprod Immunol. 2021;143:103211. doi: 10.1016/j.jri.2020.103211

 

  1. Hongwei L, Juan L, Xiaoying X, Zhijun F. MicroRNA- 106b-5p (miR-106b-5p) suppresses the proliferation and metastasis of cervical cancer cells via down-regulating fibroblast growth factor 4 (FGF4) expression. Cytotechnology. 2022;74(4):469-478. doi: 10.1007/s10616-022-00536-0

 

  1. Gao Z, Wang Q, Ji M, Guo X, Li L, Su X. Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. J Transl Med. 2021;19(1):229. doi: 10.1186/s12967-021-02872-9

 

  1. Tian Y, Luo Y, Wang J. MicroRNA-425 induces apoptosis and suppresses migration and invasion of human cervical cancer cells by targeting RAB2B. Int J Immunopathol Pharmacol. 2021;35. doi: 10.1177/20587384211016131

 

  1. He X, Wei Y, Wang Y, Liu L, Wang W, Li N. MiR-381 functions as a tumor suppressor in colorectal cancer by targeting Twist1. Onco Targets Ther. 2016;9:1231-1239. doi: 10.2147/OTT.S99228

 

  1. Yang X, Ruan H, Hu X, Cao A, Song L. miR-381-3p suppresses the proliferation of oral squamous cell carcinoma cells by directly targeting FGFR2. Am J Cancer Res. 2017;7(4):913-922.

 

  1. Zhang PF, Pei X, Li KS, et al. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer. 2019;18(1):179. doi: 10.1186/s12943-019-1111-2

 

  1. Xia B, Li H, Yang S, Liu T, Lou G. MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol. 2016;37(7):9157-9167. doi: 10.1007/s13277-016-4805-8

 

  1. Kong W, Yang L, Li PP, et al. MiR-381-3p inhibits proliferation, migration and invasion by targeting LRP6 in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 2018;22(12):3804-3811. doi: 10.26355/eurrev_201806_15264

 

  1. Kong F, Li L, Wang C, Zhang Q, He S. MiR-381-3p suppresses biological characteristics of cancer in head-neck squamous cell carcinoma cells by targeting nuclear autoantigenic sperm protein (NASP). Biosci Biotechnol Biochem. 2020;84(4):703-713. doi: 10.1080/09168451.2019.1697195

 

  1. Sun X, Hu X, Wang X, Jiang X. MiR-381-3p/RAB2A axis activates cell proliferation and inhibits cell apoptosis in bladder cancer. Cell Mol Biol (Noisy-le-grand). 2020;66(6):117-120.

 

  1. Yu YZ, Mu Q, Ren Q, Xie LJ, Wang QT, Wang CP. miR- 381-3p suppresses breast cancer progression by inhibition of epithelial-mesenchymal transition. World J Surg Oncol. 2021;19(1):230. doi: 10.1186/s12957-021-02344-w

 

  1. Wang L, Song X, Yu M, et al. Serum exosomal miR-377-3p and miR-381-3p as diagnostic biomarkers in colorectal cancer. Future Oncol. 2022;18(7):793-805. doi: 10.2217/fon-2021-1130

 

  1. Casamassimi A, Ciccodicola A. Transcriptional regulation: Molecules, involved mechanisms, and misregulation. Int J Mol Sci. 2019;20(6):1281. doi: 10.3390/ijms20061281

 

  1. Kato M, Onoyama I, Kawakami M, et al. Downregulation of 5-hydroxymethylcytosine is associated with the progression of cervical intraepithelial neoplasia. PLoS One. 2020;15(11):e0241482. doi: 10.1371/journal.pone.0241482

 

  1. Cao T, Pan W, Sun X, Shen H. Increased expression of TET3 predicts unfavorable prognosis in patients with ovarian cancer-a bioinformatics integrative analysis. J Ovarian Res. 2019;12(1):101. doi: 10.1186/s13048-019-0575-4

 

  1. Liu Y, Wu J, Chen L, et al. ncRNAs-mediated overexpression of TET3 predicts unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer. Heliyon. 2024;10(3):e24855. doi: 10.1016/j.heliyon.2024.e24855

 

  1. Zhu M, Shi B, Li C, Xu S. TET3 governs malignant behaviors and unfavorable prognosis of esophageal squamous cell carcinoma by activating the PI3K/AKT/GSK3beta/beta-catenin pathway. Open Med (Wars). 2022;17(1):1883-1895. doi: 10.1515/med-2022-0601

 

  1. Li L, Li C, Mao H, et al. Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers. Sci Rep. 2016;6:26591. doi: 10.1038/srep26591

 

  1. Kurdyukov S, Bullock M. DNA methylation analysis: Choosing the right method. Biology (Basel). 2016;5(1):3. doi: 10.3390/biology5010003

 

  1. Siegmund KD. Statistical approaches for the analysis of DNA methylation microarray data. Human genetics. 2011;129(6):585-595. doi: 10.1007/s00439-011-0993-x

 

  1. Yang J, Gao Y, Yao S, Wan S, Cai H. TFAP2A promotes cervical cancer via a positive feedback pathway with PDL1. Oncol Rep. 2023;49(6):585-5959. doi: 10.3892/or.2023.8551

 

  1. Zhang P, Hou Q, Yue Q. MiR-204-5p/TFAP2A feedback loop positively regulates the proliferation, migration, invasion and EMT process in cervical cancer. Cancer Biomark. 2020;28(3):381-390. doi: 10.3233/CBM-191064

 

  1. Tan L, Shi YG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development. 2012;139(11):1895-1902. doi: 10.1242/dev.070771

 

  1. Krueger C, Peat JR, Eckersley-Maslin MA, et al. A non-catalytic role of TET3 promotes open chromatin and enhances global transcription. 2017:177626. doi: 10.1101/177626

 

  1. Xue S, Liu C, Sun X, et al. TET3 inhibits type I IFN production independent of DNA demethylation. Cell Rep. 2016;16(4):1096-1105. doi: 10.1016/j.celrep.2016.06.068

 

  1. Wu X, Li G, Xie R. Decoding the role of TET family dioxygenases in lineage specification. Epigenetics Chromatin. 2018;11(1):58. doi: 10.1186/s13072-018-0228-7

 

  1. Lei LX, Chen ZD. Combination of antisense human telomerase RNA and antisense human telomerase catalytic subunit inhibits cervical cancer Hela cells growth. Zhonghua Fu Chan Ke Za Zhi. 2005;40(1):42-46.

 

  1. Wang LN, Huang KJ, Wang L, Cheng HY. Overexpression of Ubiquilin4 is associated with poor prognosis in patients with cervical cancer. World J Clin Cases. 2022; 10(9):2783-2791. doi: 10.12998/wjcc.v10.i9.2783

 

  1. Bristol ML, Das D, Morgan IM. Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling. Viruses. 2017;9(10):268. doi: 10.3390/v9100268
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing