Combination therapy of cisplatin and green silver nanoparticles enhances cytotoxicity and apoptosis in breast cancer cells
Cisplatin is one of the first-line drugs for the treatment of breast cancer and is known for its ability to disrupt cancer cell DNA. However, cisplatin chemotherapy carries side effects and the risk of drug resistance. A strategy to improve its anti-cancer efficacy while reducing its negative effects on health is to leverage the synergistic potential of natural molecules with cisplatin. In this study, we explored combination therapy using cisplatin along with biosynthesized silver nanoparticles (Ag NPs) to enhance apoptosis induction in MCF-7 breast cancer cells while reducing cisplatin resistance. The biosynthesized Ag NPs, derived from Acacia Luciana flower extracts, possess active molecules that effectively inhibit MCF-7 cells. Concurrent administration of cisplatin and Ag NPs resulted in a notable decrease in the IC50 value – approximately 22 – 26 times lower compared to individual treatments of free Ag NPs and cisplatin, respectively. Furthermore, the combination therapy significantly increased the BAK1/BCLX ratio by 162-fold compared to the control, while the cisplatin alone failed to activate intrinsic apoptosis pathway. In addition, the expression level of the CASP3 gene, indicative of the extrinsic pathway of apoptosis, increased approximately 273 times compared to free cisplatin (CASP3 expression = 3.5). Notably, the combination therapy also reduced the expression of the AKT1 gene, associated with cell survival and treatment resistance, when compared to free cisplatin (1.87 vs. 4.488). In conclusion, our findings proved that combination therapy effectively enhances apoptosis induction by cisplatin while reducing drug resistance.
- Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023;10(4):1367-1401. doi: 10.1016/j.gendis.2022.02.007
- Kashyap D, Pal D, Sharma R, et al. Global increase in breast cancer incidence: Risk factors and preventive measures. Biomed Res Int. 2022;2022:9605439. doi: 10.1155/2022/9605439
- Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1-22. doi: 10.1007/978-0-387-74039-3_1
- Makovec T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53(2):148-158. doi: 10.2478/raon-2019-0018
- Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141-160. doi: 10.20517/cdr.2019.10
- Li Y, Meng Q, Yang M, et al. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2019;9(6):1113-1144. doi: 10.1016/j.apsb.2019.10.001
- Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378. doi: 10.1016/j.ejphar.2014.07.025
- Sun CY, Zhang QY, Zheng GJ, Feng B. Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed Pharmacother. 2019;110:518-527. doi: 10.1016/j.biopha.2018.12.010
- Zhou J, Nie RC, Yin YX, Cai XX, Xie D, Cai MY. Protective effect of natural antioxidants on reducing cisplatin-induced nephrotoxicity. Dis Markers. 2022;2022:1612348. doi: 10.1155/2022/1612348
- Fang CY, Lou DY, Zhou LQ, et al. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin. 2021;42(12):1951-1969. doi: 10.1038/s41401-021-00620-9
- Kim SH, Hong KO, Hwang JK, Park KK. Xanthorrhizol has a potential to attenuate the high dose cisplatin-induced nephrotoxicity in mice. Food Chem Toxicol. 2005;43(1):117-122. doi: 10.1016/j.fct.2004.08.018
- Ahmed EA, Omar HM, Elghaffar S, Ragb SM, Nasser AY. The antioxidant activity of vitamin C, DPPD and L-cysteine against Cisplatin-induced testicular oxidative damage in rats. Food Chem Toxicol. 2011;49(5):1115-1121. doi: 10.1016/j.fct.2011.02.002
- Vukic MD, Vukovic NL, Obradovic AD, et al. Naphthoquinone rich Onosma visianii Clem (Boraginaceae) root extracts induce apoptosis and cell cycle arrest in HCT- 116 and MDA-MB-231 cancer cell lines. Nat Prod Res. 2018;32(22):2712-2716. doi: 10.1080/14786419.2017.1374271
- Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr. 2020;60(16):2655-2675. doi: 10.1080/10408398.2019.1653822
- Li C, Hong L, Liu C, Min J, Hu M, Guo W. Astragalus polysaccharides increase the sensitivity of SKOV3 cells to cisplatin. Arch Gynecol Obstet. 2018;297(2):381-386. doi: 10.1007/s00404-017-4580-9
- Qiu M, Xue C, Zhang L. Piperine alkaloid induces anticancer and apoptotic effects in cisplatin resistant ovarian carcinoma by inducing G2/M phase cell cycle arrest, caspase activation and inhibition of cell migration and PI3K/Akt/GSK3β signalling pathway. J BUON. 2019;24(6):2316-2321.
- Li Q, Zhang Y, Yang Y, et al. Panax notoginseng saponins reduces the cisplatin-induced acute renal injury by increasing HIF-1α/BNIP3 to inhibit mitochondrial apoptosis pathway. Biomed Pharmacother. 2021;142:111965. doi: 10.1016/j.biopha.2021.111965
- Erdogan S, Turkekul K, Serttas R, Erdogan Z. The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother. 2017;88:210-217. doi: 10.1016/j.biopha.2017.01.056
- Ratan ZA, Haidere MF, Nurunnabi M, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers (Basel). 2020;12(4):855. doi: 10.3390/cancers12040855
- Sargazi A, Barani A, Heidari Majd M. Synthesis and apoptotic efficacy of biosynthesized silver nanoparticles using Acacia Luciana flower extract in MCF-7 breast cancer cells: Activation of Bak1 and Bclx for cancer therapy. BioNanoScience. 2020;10(3):683-689. doi: 10.1007/s12668-020-00753-x
- Golmohammadi M, Motahari Rad H, Soleimanpour- Lichaei S, Olya ME, Soleimanpour-Lichaei HR. Stem cell protein PIWIL2 promotes EMT process and stem cell-like properties in MCF7 breast cancer cell line. Adv Biomed Res. 2023;12:250. doi: 10.4103/abr.abr_115_23
- Habibi Khorassani SM, Ghodsi F, Arezomandan H, et al. In vitro apoptosis evaluation and kinetic modeling onto cyclodextrin-based host-guest magnetic nanoparticles containing methotrexate and tamoxifen. BioNanoSci. 2021;11(3):667-677. doi: 10.1007/s12668-021-00877-8
- Majd MH, Guo X. Investigation of the apoptosis inducing and β-catenin silencing by tetradentate schiff base zinc(II) complex on the T-47D breast cancer cells. Anticancer Agents Med Chem. 2023;23(15):1740-1746. doi: 10.2174/1871520623666230511124547
- Chavoshi H, Vahedian V, Saghaei S, Pirouzpanah MB, Raeisi M, Samadi N. Adjuvant therapy with silibinin improves the efficacy of paclitaxel and cisplatin in MCF-7 breast cancer cells. Asian Pac J Cancer Prev. 2017;18(8):2243-2247. doi: 10.22034/apjcp.2017.18.8.2243
- Ezzat A, Fayad W, Ibrahim A, et al. Combination treatment of MCF-7 spheroids by Pseudomonas aeruginosa HI1 levan and cisplatin. Biocatal Agric Biotechnol. 2020;24:101526. doi: 10.1016/j.bcab.2020.101526
- Saris CP, van de Vaart PJ, Rietbroek RC, Blommaert FA. In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis. 1996;17(12):2763-2769. doi: 10.1093/carcin/17.12.2763
- Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012;64(3):706-721. doi: 10.1124/pr.111.005637
- Mirmalek SA, Azizi MA, Jangholi E, et al. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line. Cancer Cell Int. 2015;16:3. doi: 10.1186/s12935-016-0279-4
- Ferreira RS, Dos Santos NA, Martins NM, Fernandes LS, Dos Santos AC. Non-cytotoxic concentration of cisplatin decreases neuroplasticity-related proteins and neurite outgrowth without affecting the expression of NGF in PC12 cells. Neurochem Res. 2016;41(11):2993-3003. doi: 10.1007/s11064-016-2019-5
- Wardhani LK, Kentjono WA, Romdhoni AC. Association between dose and duration of cisplatin exposure with cytotoxicity effect on nasopharyngeal carcinoma stem cell. Indian J Otolaryngol Head Neck Surg. 2019;71(Suppl 1):373-377. doi: 10.1007/s12070-018-1317-4
- Fattah A, Morovati A, Niknam Z, et al. The synergistic combination of cisplatin and piperine induces apoptosis in MCF-7 cell line. Iran J Public Health. 2021;50(5):1037-1047. doi: 10.18502/ijph.v50i5.6121
- Kutuk O, Arisan ED, Tezil T, Shoshan MC, Basaga H. Cisplatin overcomes Bcl-2-mediated resistance to apoptosis via preferential engagement of Bak: Critical role of Noxa-mediated lipid peroxidation. Carcinogenesis. 2009;30(9):1517-1527. doi: 10.1093/carcin/bgp165
- Yde CW, Issinger OG. Enhancing cisplatin sensitivity in MCF-7 human breast cancer cells by down-regulation of Bcl-2 and cyclin D1. Int J Oncol. 2006;29(6):1397-1404.
- Zou J, Zhu L, Jiang X, et al. Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget. 2018;9(13):11268-11278. doi: 10.18632/oncotarget.24109
- Qian J, Zou Y, Rahman JS, Lu B, Massion PP. Synergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung. Mol Cancer Ther. 2009;8(1):101-109. doi: 10.1158/1535-7163.Mct-08-0973
- Henkels KM, Turchi JJ. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res. 1999;59(13):3077-3083.
- Arnesano F, Natile G. Interference between copper transport systems and platinum drugs. Semin Cancer Biol. 2021;76:173-188. doi: 10.1016/j.semcancer.2021.05.023
- Zatulovskiy EA, Skvortsov AN, Rusconi P, et al. Serum depletion of holo-ceruloplasmin induced by silver ions in vivo reduces uptake of cisplatin. J Inorg Biochem. 2012;116:88-96. doi: 10.1016/j.jinorgbio.2012.07.003