ORIGINAL RESEARCH ARTICLE

A spatial transcriptome-based perspective on highly variable genes associated with the tumor microenvironment in hepatocellular carcinoma

Hang Yang1* QiNian Jiang1
Show Less
1 Department of Anesthesiology, Clinical College, Guizhou Medical University, Guiyang, China
CP 2023, 5(4), 1917
Submitted: 26 August 2023 | Accepted: 2 November 2023 | Published: 18 November 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hepatocellular carcinoma is a common pathologic and histologic subtype ofprimary liver cancer and a common cause of cancer-related death. The tumor microenvironment (TME) is involved in the composition and deterioration of the cancer pathological environment and thus understanding the components of the TME of hepatocellular carcinoma and the mechanisms involved will aid in the developmentof strategies for inhibiting hepatocellular carcinoma progression and metastasis. The spatial transcriptomic data were used to uncover specific cell subclusters based on Seurat’s process, followed using Monocle to perform pseudotemporal analysis. Spatial gene pathways were analyzed using the gene set variation analysis(GSVA) package process, and single-cell sequencing data were processed using Seurat. Gene sets were scored using the AddModuleScore approach. Quantitative polymerase chain reaction and immunohistochemistry as well as molecular docking assays were used to determine the biological effects of S100A6. The tumor tissueregion revealed a specific subpopulation called cluster 4, which was rich in cancer associated fibroblasts, particularly myofibroblasts. GSVA analysis suggested that this subpopulation was involved in the epithelial-mesenchymal transition process, and Kyoto Encyclopedia of Genes and Genomes analysis uncovered its involvement in the composition of extracellular matrix components. Pathological sections of the spatial transcriptome revealed that this subpopulation was specifically expressed at the tumor’s broad envelope boundary and in stroma-rich locations, as confirmed with subsequent sections. The most prognostically relevant gene, S100A6, wasdetected using TCGA sequencing, and expression patterns and tissue locations were consistent with the similar trends of this subpopulation. In conclusion, we identified subgroups with tissue-specific expression patterns and marker genes that are most substantially associated with cancer prognosis, allowing us to gain a more comprehensive understanding of the intricate compositional alterations in the TME.

Keywords
Spatial transcriptome
Hepatocellular carcinoma
Multidimensional integrated analysis
S100A6
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17-48. doi: 10.3322/caac.21763

 

  1. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6:924-935. doi: 10.1038/nrc2013

 

  1. Chen X, Song E. Turning foes to friends: Targeting cancerassociated fibroblasts. Nat Rev Drug Discov. 2019;18:99-115. doi: 10.1038/s41573-018-0004-1

 

  1. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79:4557-4566. doi: 10.1158/0008-5472.CAN-18-3962

 

  1. Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5:166. doi: 10.1038/s41392-020-00280-x

 

  1. Chen Z, Zhou L, Liu L, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020;11:5077. doi: 10.1038/s41467-020-18916-5

 

  1. Elyada E, Bolisetty M, Laise P, et al. Cross-species singlecell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102-1123. doi: 10.1158/2159-8290.CD-19-0094

 

  1. Kamali Zonouzi S, Pezeshki PS, Razi S, Rezaei N. Cancer associated fibroblasts in colorectal cancer. Clin Transl Oncol. 2022;24:757-769. doi: 10.1007/s12094-021-02734-2

 

  1. Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: Progress and perspectives. J Hematol Oncol. 2021;14:91. doi: 10.1186/s13045-021-01105-2

 

  1. Zhang L, Chen D, Song D, et al. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther. 2022;7:111. doi: 10.1038/s41392-022-00960-w

 

  1. Peng Z, Ye M, Ding H, Feng Z, Hu K. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J Transl Med. 2022;20:302. doi: 10.1186/s12967-022-03510-8

 

  1. Golubnitschaja O, Baban B, Boniolo G, et al. Medicine in the early twenty-first century: Paradigm and anticipation-EPMA position paper 2016. Epma J 2016;7:23. doi: 10.1186/s13167-016-0072-4

 

  1. Wu R, Guo W, Qiu X, et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci Adv. 2021;7:eabg3750. doi: 10.1126/sciadv.abg3750

 

  1. Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134-153. doi: 10.1158/2159-8290.CD-21-0316

 

  1. Sun D, Wang J, Han Y, et al. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021;49:D1420-D1430. doi: 10.1093/nar/gkaa1020

 

  1. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-3587.e29. doi: 10.1016/j.cell.2021.04.048

 

  1. Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods. 2020;17:193-200. doi: 10.1038/s41592-019-0701-7

 

  1. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017;14:309-315. doi: 10.1038/nmeth.4150

 

  1. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. doi: 10.1186/1471-2105-14-7

 

  1. Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 2020;32:e2002054. doi: 10.1002/adma.202002054

 

  1. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20:840. doi: 10.3390/ijms20040840

 

  1. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61-68. doi: 10.1016/j.canlet.2016.01.043

 

  1. Gunassekaran GR, Poongkavithai Vadevoo SM, Baek MC, Lee B. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials. 2021;278:121137. doi: 10.1016/j.biomaterials.2021.121137

 

  1. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/ M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090

 

  1. Mellone M, Piotrowska K, Venturi G, et al. ATM regulates differentiation of myofibroblastic cancer-associated fibroblasts and can be targeted to overcome immunotherapy resistance. Cancer Res. 2022;82:4571-4585. doi: 10.1158/0008-5472.CAN-22-0435

 

  1. Sun X, He X, Zhang Y, et al. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut. 2022;71:129-147. doi: 10.1136/gutjnl-2020-322744

 

  1. Mao X, Xu J, Wang W, et al. Crosstalk between cancerassociated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 2021;20:131. doi: 10.1186/s12943-021-01428-1

 

  1. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelialmesenchymal transformation by hepatocellular carcinomaeducated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13. doi: 10.1186/s13046-020-01808-3

 

  1. Li Z, Liu J, Chen T, et al. HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. J Exp Clin Cancer Res. 2021;40:86. doi: 10.1186/s13046-021-01890-1

 

  1. Xia P, Zhang H, Xu K, et al. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis. 2021;12:691. doi: 10.1038/s41419-021-03973-5

 

  1. Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 proteins in fatty liver disease and hepatocellular carcinoma. Int J Mol Sci. 2022;23. doi: 10.3390/ijms231911030

 

  1. Li Z, Tang M, Ling B, et al. Increased expression of S100A6 promotes cell proliferation and migration in human hepatocellular carcinoma. J Mol Med (Berl). 2014;92:291-303. doi: 10.1007/s00109-013-1104-3

 

  1. Song D, Xu B, Shi D, Li S, Cai Y. S100A6 promotes proliferation and migration of HepG2 cells via increased ubiquitin-dependent degradation of p53. Open Med (Wars). 2020;15:317-326. doi: 10.1515/med-2020-0101

 

  1. Wang XH, Zhang LH, Zhong XY, et al. S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer. Am J Pathol. 2010;177:586-597. doi: 10.2353/ajpath.2010.091217

 

  1. Xia P, He H, Kristine MS, et al. Therapeutic effects of recombinant human S100A6 and soluble receptor for advanced glycation end products(sRAGE) on CCl(4)-induced liver fibrosis in mice. Eur J Pharmacol. 2018;833:86-93. doi: 10.1016/j.ejphar.2018.05.030

 

  1. Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, Tacke F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells. 2019;8:503. doi: 10.3390/cells8050503

 

  1. Dong D, Xu Z, Zhong W, Peng S. Parallelization of molecular docking: A review. Curr Top Med Chem. 2018;18:1015-1028. doi: 10.2174/1568026618666180821145215

 

  1. Man S, Luo C, Yan M, Zhao G, Ma L, Gao W. Treatment for liver cancer: From sorafenib to natural products. Eur J Med Chem. 2021;224:113690. doi: 10.1016/j.ejmech.2021.113690
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing