AccScience Publishing / CP / Volume 7 / Issue 4 / DOI: 10.36922/CP025200034
ORIGINAL RESEARCH ARTICLE

Genetic alterations of APC and MYC in fibroadenoma and invasive ductal adenocarcinoma: Implications for pathogenesis and personalized gene therapy

Ekundina Victor Olukayode1 Kehinde Adedapo Olajide2*
Show Less
1 Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria
2 Department of Histopathology, Faculty of Medical Laboratory Science, Achievers University, Owo, Ondo, Nigeria
CP 2025, 7(4), 61–68; https://doi.org/10.36922/CP025200034
Received: 15 May 2025 | Revised: 18 September 2025 | Accepted: 11 November 2025 | Published online: 31 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Breast cancer is a major public health concern, particularly among women, and its treatment remains challenging worldwide. Targeted gene therapy may offer a promising approach to reducing the disease burden and improving clinical outcomes. Hence, this study evaluates the mutation patterns of the APC and MYC genes in benign and malignant breast lesions. Ten formalin-fixed heterogeneous paraffin-embedded tissue blocks—five fibroadenomas and five invasive ductal adenocarcinomas (IDA)—from the pathological archives of Federal Teaching Hospital Ido-Ekiti were subjected to analysis. Nucleic acid extraction was performed using the Dellaporta DNA extraction protocol, followed by amplification using polymerase chain reaction (PCR). The samples were subsequently sequenced using the Applied Biosystems 3130xl Genetic Analyzer sequencer following the manufacturer’s instructions. Genetic analyses were conducted using BioEdit and MEGA 6, and HGVSc, HGVSp, and variant allele frequency (%) were evaluated. Transition single-nucleotide polymorphisms (SNPs) were identified in APC for both fibroadenoma and IDA. Functional mutations in APC include silent and missense mutations in fibroadenoma, whereas IDA displayed only missense mutations. In the MYC gene, SNPs in fibroadenoma included both transversions and transitions, whereas transition and transversion SNPs, as well as insertions/deletions, were observed in IDA. Missense and silent functional mutations of MYC were observed in both fibroadenoma and IDA. Overall, the study demonstrated the presence of missense mutations in both APC and MYC genes in fibroadenoma and IDA.

Keywords
Targeted therapy
Precision medicine
Adenomatous polyposis coli
Myelocytomatosis
Mutation
Fibroadenoma
Invasive ductal adenocarcinoma
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Ekundina VO, Kehinde AO, Azuh OV, Okah S. Retinoblastoma (Rb) and kirsten rat sarcoma viral oncogene homolog (kras) mutation signature in fibroadenoma and invasive adenocarcinoma of the breast. Int J Forensic Med Invest. 2023;9:63.

 

  1. Aremu AO, Ekundina VO, Enye LA, Kehinde AO, Ogunlayi AC. Assessing the diagnostic impact of p53, p16, retinoblastoma and bcl-2 proteins in human papillomavirus-associated squamous cell carcinoma of the cervix. J Prev Diagn Treat Strategies Med. 2024;3(2):115-121. doi: 10.4103/jpdtsm.jpdtsm_38_24

 

  1. Kiljańczyk A, Matuszczak M, Marciniak W, et al. Blood lead level as marker of increased risk of ovarian cancer in BRCA1 carriers. Nutrients. 2024;16(9):1370. doi: 10.3390/nu16091370

 

  1. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers. 2021;13(17):4287. doi: 10.3390/cancers13174287

 

  1. Xu H, Xu B. Breast cancer: Epidemiology, risk factors and screening. Chin J Cancer Res. 2023;35(6):565-583. doi: 10.21147/j.issn.1000-9604.2023.06.02

 

  1. Cortesi L, Rugo HS, Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 2021;16:255-282. doi: 10.1007/s11523-021-00796-4

 

  1. Virga A, Gianni C, Palleschi M, et al. A novel AKT1, ERBB2, ESR1, KRAS, PIK3CA, and TP53 NGS assay: A non-invasive tool to monitor resistance mechanisms to hormonal therapy and CDK4/6 Inhibitors. Biomedicines. 2024;12(10):2183. doi: 10.3390/biomedicines12102183

 

  1. Xiao W, Zhang G, Chen B, et al. Characterization of frequently mutated cancer genes and tumor mutation burden in chinese breast cancer. Front Oncol. 2021;11:618767. doi: 10.3389/fonc.2021.618767

 

  1. Kehinde AO, Olukayode EV, Akinpelu M, Oluwaseun OO. MicroRNAs in personalized medicine: Targeted therapeutic interventions and their emerging role as non-invasive biomarkers in cancer biology. Int J Biol Med Res. 2025;16(1):7974-7979.

 

  1. Gallas AE, Morenikeji GO, King RE, et al. An overview of invasive ductal carcinoma (Idc) in women’s breast cancer. Curr Mol Med. 2025;25(4):361-371. doi: 10.2174/0115665240349468241113065031

 

  1. Olukayode EV, Olajide KA, Preye MG. The study of mutations of CDK4 and TP53 genes in selected breast lesions. Sokoto J Med Lab Sci. 2023;8(1):65-77. doi: 10.4314/sokjmls.v8i1.9

 

  1. Jones RH, Casbard A, Carucci M, et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): A multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2020;21(3):345-57. doi: 10.1016/S1470-2045(19)30817-4

 

  1. Yuan S, Almagro J, Fuchs E. Beyond genetics: Driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer. 2024;24:274-286. doi: 10.1038/s41568-023-00660-9

 

  1. Duffy MJ, O’Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154. doi: 10.1016/j.ctrv.2021.102154

 

  1. Wolf E, Eilers M. Targeting MYC proteins for tumor therapy. Ann Rev Cancer Biolo. 2020;4(1):61-75. doi: 10.1146/annurev-cancerbio-030518-055826

 

  1. García-Gutiérrez L, Bretones G, Molina E, et al. MYC stimulates cell cycle progression through the activation of cdk1 and phosphorylation of p27. Sci Rep. 2019;9(1):18693. doi: 10.1038/s41598-019-54917-1

 

  1. Shi Y, Wu Y, Li F, et al. Investigating the immunogenic cell death-dependent subtypes and prognostic signature of triple-negative breast cancer. Phenomics. 2024;4(1):34-45. doi: 10.1007/s43657-023-00133-x

 

  1. Wang XH, Fu YL, Xu YN, et al. Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor. J Integr Med. 2024;22(6): 709-718. doi: 10.1016/j.joim.2024.09.004

 

  1. Kehinde AO, Ekundina VO, Iyiola S, Avwioro G, Enye LA. Synergistic nutraceutical effects of aqueous extracts from Vernonia amygdalina and Moringa oleifera: A promising therapeutic strategy for gastric ulcer management. J Prev Diagn Treat Strateg Med. 2024;3(4):296-302. doi: 10.4103/jpdtsm.jpdtsm_102_24

 

  1. Ghatak S, Chakraborty P, Sarkar SR, Chowdhury B, BhaumikxA, Kumar NS. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer. BMC Med Genet. 2017;18:61. doi: 10.1186/s12881-017-0427-2.

 

  1. Erazo-Oliveras A, Muñoz-Vega M, Mlih M, et al. Mutant APC reshapes wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun. 2023;14:4342. doi: 10.1038/s41467-023-39640-w

 

  1. Zhang D, Ni QQ, Wang SY, et al. APC mutations disrupt β-Catenin destruction complex condensates organized by axin phase separation. Cell Mol Life Sci. 2024;81:57. doi: 10.1007/s00018-023-05068-0

 

  1. Ghadamyari F, Heidari MM, Zeinali S, et al. Mutational screening through comprehensive bioinformatics analysis to detect novel germline mutations in the APC gene in patients with familial adenomatous polyposis (FAP). J Clin Lab Anal. 2021;35(5):e23768. doi: 10.1002/jcla.23768

 

  1. Huang K. The impact of genomic instability on tumor progression and its implications for cancer therapy development. J Carcinog Mutagen. 2024;15:4. doi: 10.35248/2157-2518.24.S47.004

 

  1. Freitas MO, Gartner J, Rangel-Pozzo A, Mai S. Genomic instability in circulating tumor cells. Cancers (Basel). 2020;12(10):3001. doi: 10.3390/cancers12103001

 

  1. Rypens C, Bertucci F, Viens P, et al. Abstract P3-03-03: Inflammatory breast cancer exhibits amplification and transcriptional activation of MYC in conjunction with NOTCH and TGFβ signaling. Cancer Res. 2020;80 (4):P3-03-03. doi: 10.1158/1538-7445.sabcs19-p3-03-03

 

  1. Yıldırım S, Kocabaş F, Mermer A. Development, synthesis and validation of improved c‐Myc/Max inhibitors. J Cell Mol Med. 2024;28(8):e18272. doi: 10.1111/jcmm.18272

 

  1. Schaub FX, Dhankani V, Berger AC, et al. Pan-cancer alterations of the MYC oncogene and its proximal network across the cancer genome Atlas. Cell Syst. 2018;6(3):282-300.e2. doi: 10.1016/j.cels.2018.03.003

 

  1. Xu-Monette ZY, Deng Q, Manyam GC, et al. clinical and biologic significance of MYC genetic mutations in de novo diffuse large B-cell lymphoma. Clin Cancer Res. 2016;22(14):3593-3605. doi: 10.1158/1078-0432.CCR-15-2296

 

  1. Zeng Z, Vo A, Li X, et al. Somatic genetic aberrations in benign breast disease and the risk of subsequent breast cancer. NPJ Breast Cancer. 2020;6:24. doi: 10.1038/s41523-020-0165-z

 

  1. Winham SJ, Wang C, Heinzen EP, et al. Somatic mutations in benign breast disease tissues and association with breast cancer risk. BMC Med Genomics. 2021;14:85. doi: 10.1186/s12920-021-01032-8

 

  1. Santarpia L, Bottai G, Kelly CM, Győrffy B, Székely B, Pusztai L. Deciphering and targeting oncogenic mutations and pathways in breast cancer. Oncologist. 2016;21(9): 1063-78. doi: 10.1634/theoncologist.2015-0369

 

  1. Zhou S, Liu S, Zhao L, Sun HX. A comprehensive survey of genomic mutations in breast cancer reveals recurrent neoantigens as potential therapeutic targets. Fron Oncol. 2022;12:786438. doi: 10.3389/fonc.2022.786438
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing