REVIEW ARTICLE

Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in hepatocellular carcinoma: From inflammation to clinical applications

Yusra Zarlashat1 Tayyeba A1 Shoukat Hussain1*
Show Less
1 Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
CP 2024, 6(4), 5758
Submitted: 4 November 2024 | Accepted: 17 December 2024 | Published: 31 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, with a rising global incidence and a high mortality rate. Chronic infections with hepatitis viruses, along with risk factors such as cirrhosis, metabolic dysfunction-associated steatohepatitis, and metabolic disorders, significantly contribute to HCC development. Systemic inflammation plays a key role in HCC pathogenesis, with inflammatory markers such as the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) emerging as significant prognostic indicators. Elevated NLR and PLR are associated with poor overall survival and progression-free survival in HCC patients, reflecting an imbalance in the immune response and tumor microenvironment (TME). Neutrophils and platelets contribute to tumor progression by promoting inflammation, angiogenesis, and immune evasion, while lymphocytes, particularly CD8+ T-cells, play essential roles in antitumor immunity. High levels of NLR and PLR are linked to adverse clinical outcomes, including shorter survival times and higher recurrence rates. These ratios provide valuable prognostic information and are increasingly utilized in clinical settings to guide treatment decisions. This review focuses on the roles of inflammatory markers, particularly NLR and PLR, in HCC progression and prognosis, examining their effects on the TME and their potential for improving diagnostic and prognostic strategies. The use of these inflammatory markers and emerging technologies holds promise for enhancing early detection and personalized treatment strategies, ultimately improving patient outcomes in HCC.

Keywords
Hepatocellular carcinoma
Tumor microenvironment
Immune profiling
Neutrophil-to-lymphocyte ratio
Platelet-to-lymphocyte ratio
Diagnosis
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Mushtaq H, Zarlashat Y, Ambreen A, Mujahid M, Kausar S, Shafqat D. Reviewing advances in understanding and targeting the MAPK signaling pathway in hepatocellular carcinoma progression and therapeutics. Agrobiol Rec. 2024;15:103-116. doi: 10.47278/journal.abr/2024.004

 

  1. Balogh J, Victor D 3rd, Asham EH, et al. Hepatocellular carcinoma: A review. J Hepatocell Carcinoma. 2016;3:41-53. doi: 10.2147/JHC.S61146

 

  1. Calderon-Martinez E, Landazuri-Navas S, Vilchez E, et al. Prognostic scores and survival rates by etiology of hepatocellular carcinoma: A review. J Clin Med Res. 2023;15(4):200. doi: 10.14740/jocmr4902

 

  1. Zarlashat Y, Abbas S, Ghaffar A. Hepatocellular carcinoma: Beyond the border of advanced stage therapy. Cancers (Basel). 2024;16(11):2034. doi: 10.3390/cancers16112034

 

  1. Ozakyol A. Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J Gastroint Cancer. 2017;48:238-240. doi: 10.1007/s12029-017-9959-0

 

  1. Yang JD, Roberts LR. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 2010;7(8):448-458. doi: 10.1038/nrgastro.2010.100

 

  1. Zarlashat Y, Mushtaq H, Pham L, Abbas W, Sato K. Advancements in immunotherapeutic treatments for hepatocellular carcinoma: Potential of combination therapies. Int J Mol Sci. 2024;25(13):6830. doi: 10.3390/ijms25136830

 

  1. Zarlashat Y, Ambreen A, Zafar M, et al. Effect of doxorubicin and paclitaxel on the selective oncogenes expression level of hepatocellular carcinoma RAS/RAF/MEK/ERK pathway in Huh-7 cell line. Agro Rec. 2024;18:1-11. doi: 10.47278/journal.abr/2024.032

 

  1. Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Prec Oncol. 2018;2(1):6. doi: 10.1038/s41698-018-0048-z

 

  1. Refolo MG, Messa C, Guerra V, Carr BI, D’Alessandro R. Inflammatory mechanisms of HCC development. Cancers (Basel). 2020;12(3):641. doi: 10.3390/cancers12030641

 

  1. Sanghera C, Teh JJ, Pinato DJ. The systemic inflammatory response as a source of biomarkers and therapeutic targets in hepatocellular carcinoma. Liver Int. 2019;39(11):2008-2023. doi: 10.1111/liv.14220

 

  1. She S, Shi J, Zhu J, Yang F, Yu J, Dai K. Impact of inflammation and the immune system on hepatocellular carcinoma recurrence after hepatectomy. Cancer Med. 2024;13(4):e7018. doi: 10.1002/cam4.7018

 

  1. Cui S, Cao S, Chen Q, He Q, Lang R. Preoperative systemic inflammatory response index predicts the prognosis of patients with hepatocellular carcinoma after liver transplantation. Front Immunol. 2023;14:1118053. doi: 10.3389/fimmu.2023.1118053

 

  1. Muhammed A, Fulgenzi CAM, Dharmapuri S, et al. The systemic inflammatory response identifies patients with adverse clinical outcome from immunotherapy in hepatocellular carcinoma. Cancers (Basel). 2021;14(1):186. doi: 10.3390/cancers14010186

 

  1. Zheng J, Cai J, Li H, et al. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio as prognostic predictors for hepatocellular carcinoma patients with various treatments: A meta-analysis and systematic review. Cell Physiol Biochem. 2017;44(3):967-981. doi: 10.1159/000485396

 

  1. Minici R, Siciliano MA, Ammendola M, et al. Prognostic role of neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR) and lymphocyte-to-C reactive protein ratio (LCR) in patients with hepatocellular carcinoma (HCC) undergoing chemoembolizations (TACE) of the liver: The unexplored corner linking tumor microenvironment, biomarkers and interventional radiology. Cancers (Basel). 2022;15(1):257. doi: 10.3390/cancers15010257

 

  1. Minici R, Venturini M, Guzzardi G, et al. A multicenter international retrospective investigation assessing the prognostic role of inflammation-based scores (neutrophil-to-lymphocyte, lymphocyte-to-monocyte, and platelet-to-lymphocyte ratios) in patients with intermediate-stage hepatocellular carcinoma (HCC) undergoing chemoembolizations of the liver. Cancers (Basel). 2024;16(9):1618. doi: 10.3390/cancers16091618

 

  1. Shahini E, Pasculli G, Solimando AG, Tiribelli C, Cozzolongo R, Giannelli G. Updating the clinical application of blood biomarkers and their algorithms in the diagnosis and surveillance of hepatocellular carcinoma: A critical review. Int J Mol Sci. 2023;24(5):4286. doi: 10.3390/ijms24054286

 

  1. Ma L, Zeng A, Chen B, Chen Y, Zhou R. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in patients with systemic lupus erythematosus and their correlation with activity: A meta-analysis. Int Immunopharm. 2019;76:105949. doi: 10.1016/j.intimp.2019.105949

 

  1. Long W, Chen J, Gao C, Lin Z, Xie X, Dai H. Brief review on the roles of neutrophils in cancer development. J Leucocyte Biol. 2021;109(2):407-413. doi: 10.1002/JLB.4MR0820-011R

 

  1. Yan M, Zheng M, Niu R, et al. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Front Cell Dev Biol. 2022;10:938289. doi: 10.3389/fcell.2022.938289

 

  1. Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol. 2023;14:1180810. doi: 10.3389/fimmu.2023.1180810

 

  1. Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol. 2021;14:1-17. doi: 10.1186/s13045-021-01187-y

 

  1. Arvanitakis K, Mitroulis I, Germanidis G. Tumor-associated neutrophils in hepatocellular carcinoma pathogenesis, prognosis, and therapy. Cancers (Basel). 2021;13(12):2899. doi: 10.3390/cancers13122899

 

  1. Zhu W, Fan C, Dong S, Li X, Chen H, Zhou W. Neutrophil extracellular traps regulating tumorimmunity in hepatocellular carcinoma. Front Immunol. 2023;14:1253964. doi: 10.3389/fimmu.2023.1253964

 

  1. Lee JH, Hong YM. The relationship between tumor-infiltrating neutrophils and clinical outcomes in patients with resectable hepatocellular carcinoma. BMC Cancer. 2024;24(1):327. doi: 10.1186/s12885-024-12074-3

 

  1. Chen H, Zhou XH, Li JR, et al. Neutrophils: Driving inflammation during the development of hepatocellular carcinoma. Cancer Lett. 2021;522:22-31. doi: 10.1016/j.canlet.2021.09.011

 

  1. Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. 2019;9:1146. doi: 10.3389/fonc.2019.01146

 

  1. Sun B, Ji WD, Wang WC, et al. Circulating tumor cells participate in the formation of microvascular invasion and impact on clinical outcomes in hepatocellular carcinoma. Front Genet. 2023;14:1265866. doi: 10.3389/fgene.2023.1265866

 

  1. Liao K, Zhang X, Liu J, et al. The role of platelets in the regulation of tumor growth and metastasis: The mechanisms and targeted therapy. MedComm. 2023;4(5):e350. doi: 10.1002/mco2.350

 

  1. Karachaliou N, Pilotto S, Bria E, Rosell R. Platelets and their role in cancer evolution and immune system. Transl Lung Cancer Res. 2015;4(6):713. doi: 10.3978/j.issn.2218-6751.2015.10.09

 

  1. Pavlovic N, Rani B, Gerwins P, Heindryckx F. Platelets as key factors in hepatocellular carcinoma. Cancers (Basel). 2019;11(7):1022. doi: 10.3390/cancers11071022

 

  1. Trivanović D, Mojsilović S, Bogosavljević N, Jurišić V, Jauković A. Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development. Transl Oncol. 2024;40:101871. doi: 10.1016/j.tranon.2023.101871

 

  1. Bian J, Lin J, Long J, et al. T lymphocytes in hepatocellular carcinoma immune microenvironment: Insights into human immunology and immunotherapy. Am J Cancer Res. 2020;10(12):4585.

 

  1. Wang X, Yuan Z, Li Z, et al. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: Basic principles and recent advances. Front Immunol. 2024;15:1354313. doi: 10.3389/fimmu.2024.1354313

 

  1. Montauti E, Oh DY, Fong L. CD4+ T cells in antitumor immunity. Trend Cancer. 2024;10:969-985. doi: 10.1016/j.trecan.2024.07.009

 

  1. Zheng X, Jin W, Wang S, Ding H. Progression on the roles and mechanisms of tumor-infiltrating T lymphocytes in patients with hepatocellular carcinoma. Front Immunol. 2021;12:729705. doi: 10.3389/fimmu.2021.729705

 

  1. Chaoul N, Mancarella S, Lupo L, Giannelli G, Dituri F. Impaired anti-tumor T cell response in hepatocellular carcinoma. Cancers (Basel). 2020;12(3):627. doi: 10.3390/cancers12030627

 

  1. Singh A, Anang V, Kumari K, Kottarath SK, Verma C. Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. Prog Mol Biol Transl Sci. 2023;194:269-310. doi: 10.1016/bs.pmbts.2022.10.002

 

  1. Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 2023;77(5):1773-1796. doi: 10.1002/hep.32740

 

  1. Stulpinas R, Zilenaite-Petrulaitiene D, Rasmusson A, et al. Prognostic value of CD8+ Lymphocytes in hepatocellular carcinoma and perineoplastic parenchyma assessed by interface density profiles in liver resection samples. Cancers (Basel). 2023;15(2):366. doi: 10.3390/cancers15020366

 

  1. Ding W, Xu X, Qian Y, et al. Prognostic value of tumor-infiltrating lymphocytes in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore). 2018;97(50):e13301. doi: 10.1097/MD.0000000000013301

 

  1. Li L, Yu R, Cai T, et al. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharm. 2020;88:106939. doi: 10.1016/j.intimp.2020.106939

 

  1. Li Z, Dongyu D, Li L, et al. Tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for hepatocellular carcinoma: Recent research progress. Front Pharmacol. 2024;15:1382256. doi: 10.3389/fphar.2024.1382256

 

  1. Luan J, Liu Y, Cao M, Guo X, Guo N. The pathogenic response of cytotoxic Tlymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes. Oncol Rep. 2024;52(1):1-9. doi: 10.3892/or.2024.8757

 

  1. Li J, Zhou J, Kai S, Wang C, Wang D, Jiang J. Functional and clinical characterization of tumor-infiltrating T cell subpopulations in hepatocellular carcinoma. Front Genet. 2020;11:586415. doi: 10.3389/fgene.2020.586415

 

  1. Lu J, Luo Y, Rao D, et al. Myeloid-derived suppressor cells in cancer: Therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol. 2024;13(1):39. doi: 10.1186/s40164-024-00505-7

 

  1. Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol. 2023;14:1133308. doi: 10.3389/fimmu.2023.1133308

 

  1. Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Mol Immunol. 2022;144:58-70. doi: 10.1016/j.molimm.2022.02.015

 

  1. Jayant K, Habib N, Huang KW, Warwick J, Arasaradnam R. Recent advances: The imbalance of immune cells and cytokines in the pathogenesis of hepatocellular carcinoma. Diagnostics (Basel). 2020;10(5):338. doi: 10.3390/diagnostics10050338

 

  1. Li DZ, Guo J, Song QK, Hu XJ, Bao XL, Lu J. Prognostic prediction of the platelet-to-lymphocyte ratio in hepatocellular carcinoma: A systematic review and meta-analysis. Transl Cancer Res. 2022;11(11):4037. doi: 10.21037/tcr-22-1197

 

  1. Wang H, Ding Y, Li N, et al. Prognostic value of neutrophil-lymphocyte ratio, platelet-lymphocyte ratio, and combined neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in stage IV advanced gastric cancer. Front Oncol. 2020;10:841. doi: 10.3389/fonc.2020.00841

 

  1. Niu Y, Yuan X, Guo F, et al. Correlation between NLR combined with PLR score and prognosis of hepatocellular carcinoma after liver transplantation. Int J Gen Med. 2024;17:2445-2453. doi: 10.2147/IJGM.S450585

 

  1. Ma W, Zhang P, Qi J, et al. Prognostic value of platelet to lymphocyte ratio in hepatocellular carcinoma: A meta-analysis. Sci Rep. 2016;6(1):35378. doi: 10.1038/srep35378

 

  1. Akamatsu N, Sugawara Y, Kokudo N. Living donor liver transplantation for patients with hepatocellular carcinoma. Liver Cancer. 2014;3(2):108-118. doi: 10.1159/000343866

 

  1. Li M, Spakowicz D, Burkart J, et al. Change in neutrophil to lymphocyte ratio during immunotherapy treatment is a non-linear predictor of patient outcomes in advanced cancers. J Cancer Res Clin Oncol. 2019;145:2541-2546. doi: 10.1007/s00432-019-02982-4

 

  1. Mouchli M, Reddy S, Gerrard M, Boardman L, Rubio M. Usefulness of neutrophil-to-lymphocyte ratio (NLR) as a prognostic predictor after treatment of hepatocellular carcinoma. Review article. Ann Hepatol. 2021;22:100249. doi: 10.1016/j.aohep.2020.08.067

 

  1. Xu C, Wu F, Du L, Dong Y, Lin S. Significant association between high neutrophil-lymphocyte ratio and poor prognosis in patients with hepatocellular carcinoma: A systematic review and Meta-analysis. Front Immunol. 2023;14:1211399. doi: 10.3389/fimmu.2023.1211399

 

  1. Xiao WK, Chen D, Li SQ, Fu SJ, Peng BG, Liang LJ. Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular carcinoma: A meta-analysis. BMC Cancer. 2014;14:117. doi: 10.1186/1471-2407-14-117

 

  1. Chu HH, Kim JH, Shim JH, et al. Neutrophil-to-lymphocyte ratio as a biomarker predicting overall survival after chemoembolization for intermediate-stage hepatocellular carcinoma. Cancers (Basel). 2021;13(11):2830. doi: 10.3390/cancers13112830

 

  1. He C, Zhang Y, Cai Z, Lin X. The prognostic and predictive value of the combination of the neutrophil-to-lymphocyte ratio and the platelet-to-lymphocyte ratio in patients with hepatocellular carcinoma who receive transarterial chemoembolization therapy. Cancer Manag Res. 2019;11:1391-1400. doi: 10.2147/CMAR.S190545

 

  1. Xue TC, Jia QA, Ge NL, et al. The platelet-to-lymphocyte ratio predicts poor survival in patients with huge hepatocellular carcinoma that received transarterial chemoembolization. Tumor Biol. 2015;36:6045-6051. doi: 10.1007/s13277-015-3281-x

 

  1. Shen Y, Wang H, Chen X, Li W, Chen J. Prognostic significance of lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio in patients with hepatocellular carcinoma undergoing transcatheter arterial chemoembolization and radiofrequency ablation. Onco Targets Ther. 2019;12:7129-7137. doi: 10.2147/OTT.S217935

 

  1. Tada T, Kumada T, Hiraoka A, et al. Platelet-lymphocyte ratio predicts survival in patients with hepatocellular carcinoma who receive lenvatinib: An inverse probability weighting analysis. Eur J Gastroenterol Hepatol. 2021;32(2):261-268. doi: 10.1097/MEG.0000000000001734

 

  1. Chen L, Ke Z, Xiong F, et al. Platelet-to-lymphocyte ratio predicts therapy outcomes of transarterial chemoembolization plus apatinib in the treatment of advanced hepatocellular carcinoma. Anticancer Drugs. 2020;31(9):966-972. doi: 10.1097/CAD.0000000000000913

 

  1. Liu Y, Shi M, Chen S, et al. Intermediate stage hepatocellular carcinoma: Comparison of the value of inflammation-based scores in predicting progression-free survival of patients receiving transarterial chemoembolization. J Cancer Res Ther. 2021;17(3):740-748. doi: 10.4103/jcrt.jcrt_29_21

 

  1. Wang JH, Chen YY, Kee KM, et al. The prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with hepatocellular carcinoma receiving atezolizumab plus bevacizumab. Cancer (Basel). 2022;14(2):343. doi: 10.3390/cancers14020343

 

  1. Schobert IT, Savic LJ, Chapiro J, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as predictors of tumor response in hepatocellular carcinoma after DEB-TACE. Eur Radiol. 2020;30:5663-5673. doi: 10.1007/s00330-020-06931-5

 

  1. Lin S, Hu S, Ran Y, Wu F. Neutrophil-to-lymphocyte ratio predicts prognosis of patients with hepatocellular carcinoma: A systematic review and meta-analysis. Transl Cancer Res. 2021;10(4):1667. doi: 10.21037/tcr-20-3237

 

  1. Suner A, Carr BI. Platelet-to-lymphocyte and neutrophil-to-lymphocyte ratios predict tumor size and survival in HCC patients: Retrospective study. Ann Med Surg. 2020;58:167-171. doi: 10.1016/j.amsu.2020.08.042

 

  1. Stojkovic Lalosevic M, Pavlovic Markovic A, Stankovic S, et al. Combined diagnostic efficacy of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and mean platelet volume (MPV) as biomarkers of systemic inflammation in the diagnosis of colorectal cancer. Dis Mark. 2019;2019(1):6036979. doi: 10.1155/2019/6036979

 

  1. Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res. 2020;39:89. doi: 10.1186/s13046-020-01586-y

 

  1. Luo QQ, Wang T, Zhang KH. New indexes derived from routine blood tests and their clinical application in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2022;46(10):102043. doi: 10.1016/j.clinre.2022.102043

 

  1. Mahassadi AK, Anzouan-Kacou Kissi H, Attia AK. The prognostic values of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio at baseline in predicting the in-hospital mortality in black african patients with advanced hepatocellular carcinoma in palliative treatment: A comparative cohort study. Hepat Med. 2021;13:123-134. doi: 10.2147/HMER.S333980

 

  1. Chartampilas E, Rafailidis V, Georgopoulou V, Kalarakis G, Hatzidakis A, Prassopoulos P. Current imaging diagnosis of hepatocellular carcinoma. Cancers (Basel). 2022;14(16):3997. doi: 10.3390/cancers14163997

 

  1. Dinca AL, Diaconu A, Birla RD, et al. Systemic inflammation factors as survival prognosis markers in ovarian neoplasm and the relationship with cancer-associated inflammatory mediators-a review. Int J Immunopathol Pharmacol. 2023;37:03946320231178769. doi: 10.1177/03946320231178769

 

  1. Chen L, Zhu C, Pan F, et al. Platelets in the tumor microenvironment and their biological effects on cancer hallmarks. Front Oncol. 2023;13:1121401. doi: 10.3389/fonc.2023.1121401

 

  1. Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):263. doi: 10.1038/s41392-021-00658-5

 

  1. Jia G, Qiu L, Zheng H, et al. Nomogram for predicting survival in patients with advanced hepatocellular carcinoma treated with PD-1 inhibitors: Incorporating pre-treatment and post-treatment clinical parameters. BMC Cancer. 2023;23(1):556. doi: 10.1186/s12885-023-11064-1

 

  1. Liu S, Xu W, Shu H, et al. Associations of circulating immunomarkers with the efficacy of immunotherapy for primary hepatic carcinoma. Cancer Med. 2023; 12(24):21830-21848. doi: 10.1002/cam4.6754

 

  1. Dharmapuri S, Özbek U, Jethra H, et al. Baseline neutrophil-lymphocyte ratio and platelet-lymphocyte ratio appear predictive of immune treatment related toxicity in hepatocellular carcinoma. World J Gastroint Oncol. 2023;15(11):1900. doi: 10.4251/wjgo.v15.i11.1900

 

  1. Li L, Li M, Jia Q. Myeloid-derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in cancer. Pathol Res Pract. 2023;248:154711. doi: 10.1016/j.prp.2023.154711

 

  1. Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int. 2024;24(1):102. doi: 10.1186/s12935-024-03293-6

 

  1. Wang YA, Li XL, Mo YZ, et al. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 2018;17:168. doi: 10.1186/s12943-018-0913-y

 

  1. Melssen MM, Sheybani ND, Leick KM, Slingluff CL Jr. Barriers to immune cell infiltration in tumors. J Immunother Cancer. 2023;11(4):e006401. doi: 10.1136/jitc-2022-006401

 

  1. Brighi N, Farolfi A, Conteduca V, et al. The interplay between inflammation, anti-angiogenic agents, and immune checkpoint inhibitors: Perspectives for renal cell cancer treatment. Cancers (Basel). 2019;11(12):1935. doi: 10.3390/cancers11121935

 

  1. Hong YM, Yoon KT, Cho M. Systemic immune-inflammation index predicts prognosis of sequential therapy with sorafenib and regorafenib in hepatocellular carcinoma. BMC Cancer. 2021;21(1):569. doi: 10.1186/s12885-021-08124-9

 

  1. Bronte G, Cosi DM, Magri C, Frassoldati A, Crinò L, Calabrò L. Immune checkpoint inhibitors in “special” NSCLC populations: A viable approach? Int J Mol Sci. 2023;24(16):12622. doi: 10.3390/ijms241612622

 

  1. Shen X, Xiang M, Tang J, et al. Evaluation of peripheral blood inflammation indexes as prognostic markers for colorectal cancer metastasis. Sci Rep. 2024;14(1):20489. doi: 10.1038/s41598-024-68150-y

 

  1. Johnson P, Zhou Q, Dao DY, Lo YD. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2022;19(10):670-681. doi: 10.1038/s41575-022-00620-y

 

  1. Lee CW, Tsai HI, Lee WC, et al. Normal alpha-fetoprotein hepatocellular carcinoma: Are they really normal? J Clin Med. 2019;8(10):1736. doi: 10.3390/jcm8101736

 

  1. Hanif H, Ali MJ, Susheela AT, et al. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma. World J Gastroenterol. 2022;28(2):216. doi: 10.3748/wjg.v28.i2.216

 

  1. Force M, Park G, Chalikonda D, et al. Alpha-fetoprotein (AFP) and AFP-L3 is most useful in detection of recurrence of hepatocellular carcinoma in patients after tumor ablation and with low AFP level. Viruses. 2022;14(4):775. doi: 10.3390/v14040775

 

  1. Candita G, Rossi S, Cwiklinska K, et al. Imaging diagnosis of hepatocellular carcinoma: A state-of-the-art review. Diagnostics (Basel). 2023;13(4):625. doi: 10.3390/diagnostics13040625

 

  1. Galle PR, Kudo M, Josep M, et al. Ramucirumab in patients with previously treated advanced hepatocellular carcinoma: Impact of liver disease aetiology. Liver Int. 2021;41(11):2759-2767. doi: 10.1111/liv.14994

 

  1. Kim HI, Lim J, Shim JH. Role of the alpha-fetoprotein response in immune checkpoint inhibitor-based treatment of patients with hepatocellular carcinoma. J Cancer Res Clin Oncol. 2022;148(8):2069-2077. doi: 10.1007/s00432-021-03727-y

 

  1. Chevallier O, Zhao K, Marinelli B, Yarmohammadi H. Image-guided percutaneous locoregional therapies for hepatocellular carcinoma. Chinese Clin Oncol. 2023;12(2):17-17. doi: 10.21037/cco-22-119

 

  1. Silva MLS. Capitalizing glycomic changes for improved biomarker-based cancer diagnostics. Explor Target Antitumor ther. 2023;4(3):366. doi: 10.37349/etat.2023.00140

 

  1. Moldogazieva NT, Mokhosoev IM, Zavadskiy SP, Terentiev AA. Proteomic profiling and artificial intelligence for hepatocellular carcinoma translational medicine. Biomed. 2021;9(2):159. doi: 10.3390/biomedicines9020159

 

  1. Wang T, Zhang KH. New blood biomarkers for the diagnosis of AFP-negative hepatocellular carcinoma. Front Oncol. 2020;10:1316. doi: 10.3389/fonc.2020.01316

 

  1. Zhou JM, Wang T, Zhang KH. AFP-L3 for the diagnosis of early hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore). 2021;100(43):e27673. doi: 10.1097/MD.0000000000027673

 

  1. Galle PR, Foerster F, Kudo M, et al. Biology and significance of alpha‐fetoprotein in hepatocellular carcinoma. Liver Int. 2019;39(12):2214-2229. doi: 10.1111/liv.14223

 

  1. Norman JS, Li PJ, Kotwani P, Shui AM, Yao F, Mehta N. AFP-L3 and DCP strongly predict early hepatocellular carcinoma recurrence after liver transplantation. J Hepatol. 2023;79(6):1469-1477. doi: 10.1016/j.jhep.2023.08.020

 

  1. Sánchez-Herrero E, Serna-Blasco R, Robado de Lope L, González-Rumayor V, Romero A, Provencio M. Circulating tumor DNA as a cancer biomarker: An overview of biological features and factors that may impact on ctDNA analysis. Front Oncol. 2022;12:943253. doi: 10.3389/fonc.2022.943253

 

  1. Bratman SV, Yang SC, Iafolla MA, et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat Cancer. 2020;1(9):873-881. doi: 10.1038/s43018-020-0096-5

 

  1. Zhu GQ, Liu WR, Tang Z, et al. Serial circulating tumor DNA to predict early recurrence in patients with hepatocellular carcinoma: A prospective study. Mol Oncol. 2022;16(2):549-561. doi: 10.1002/1878-0261.13105

 

  1. Kim H, Park KU. Clinical circulating tumor DNA testing for precision oncology. Cancer Res Treat. 2023;55(2):351-366. doi: 10.4143/crt.2022.1026

 

  1. Wehrle CJ, Hong H, Kamath S, et al. Tumor mutational burden from circulating tumor DNA predicts recurrence of hepatocellular carcinoma after resection: An emerging biomarker for surveillance: An emerging biomarker for surveillance. Ann Surg. 2024;280(3):504-513. doi: 10.1097/SLA.0000000000006386

 

  1. Kopystecka A, Patryn R, Leśniewska M, Budzyńska J, Kozioł I. The use of ctDNA in the diagnosis and monitoring of hepatocellular carcinoma-literature review. Int J Mol Sci. 2023;24(11):9342. doi: 10.3390/ijms24119342

 

  1. Kinoshita T, Goto T. Links between inflammation and postoperative cancer recurrence. J Clin Med. 2021;10(2):228. doi: 10.3390/jcm10020228

 

  1. Mleko M, Pitynski K, Pluta E, et al. Role of systemic inflammatory reaction in female genital organ malignancies-state of the art. Cancer Manag Res. 2021;13:5491-5508. doi: 10.2147/CMAR.S312828

 

  1. Zhang J, Chen G, Zhang P, et al. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS One. 2020;15(2):e0228857. doi: 10.1371/journal.pone.0228857

 

  1. Huang D, Zhang J, Xu J, Niu Q, Zhou D. Utility of alpha-fetoprotein and ultrasound in the diagnosis and prognosis of patients with hepatocellular liver cancer. J Multidiscip Healthc. 2024;17:1819-1826. doi: 10.2147/JMDH.S449276

 

  1. Aquino IMC, Pascut D. Liquid biopsy: New opportunities for precision medicine in hepatocellular carcinoma care. Ann Hepatol. 2024;29(2):101176. doi: 10.1016/j.aohep.2023.101176

 

  1. Guo L, Ren H, Pu L, Zhu X, Liu Y, Ma X. The prognostic value of inflammation factors in hepatocellular carcinoma patients with hepatic artery interventional treatments: A retrospective study. Cancer Manag Res. 2020;12:7173-7188. doi: 10.2147/CMAR.S257934
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing