ORIGINAL RESEARCH ARTICLE

Role of the IL-8/CXCR2 axis in promoting vasculogenic mimicry in triple-negative breast cancer through epithelial-mesenchymal transition

Saheed Abdulkarim1 Jude Tetteh Quarshie1 Peggy Afua Birokorang1 Mawusi Adepa Mawuli2 Samuel Mensah Baffoe1 Afua Owusua Darkwah Abrahams2 Anastasia Rosebud Aikins1*
Show Less
1 West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Greater Accra Region, Ghana
2 Department of Pathology, School of Medicine and Dentistry, University of Ghana Medical School, Accra, Greater Accra Region, Ghana
CP 2024, 6(2), 3356
Submitted: 4 April 2024 | Accepted: 20 June 2024 | Published: 2 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Vasculogenic mimicry (VM) — a phenomenon where tumor cells form de novo vascular networks independent of endothelial cells — supports the growth of highly aggressive tumors, including triple-negative breast cancer (TNBC). Evidence indicates that the interleukin 8 (IL-8)/CXCR2 axis and epithelial-mesenchymal transition (EMT) independently promote VM in TNBC. This study tested the hypothesis that the IL-8/CXCR2 axis promotes VM via EMT. Tissue samples from 71 female breast cancer cases (age range: 50 – 55 years), comprising 37 TNBC and 34 non-TNBC cases, were retrieved from the Department of Pathology at the University of Ghana Medical School. Out of the 37 TNBC tissues, 10 expressed either IL-8, CXCR2, or vimentin exclusively; three expressed all three markers; and 14 did not express any of these markers. For the non-TNBC tissues, 31 expressed CXCR2 (alone or co-expression with IL-8 and/or vimentin), 27 co-expressed IL-8 with CXCR2 and/or vimentin, and two expressed all three markers. Notably, 24 of the 37 non-TNBC tissues co-expressed IL-8 and CXCR2. A phi coefficient analysis displayed an inverse relationship between CXCR2 or IL-8 expression and TNBC and a positive correlation between vimentin expression and TNBC. Inhibiting the IL-8/CXCR2 axis with the CXCR2 antagonist SB225002 suppressed VM in MDA-MB-231 breast cancer cells. In addition, inhibiting the IL-8/CXCR2 axis using SB225002 and siRNA-mediated CXCR2 knockdown suppressed EMT by upregulating E-cadherin expression and downregulating N-cadherin and vimentin expression. Our findings suggest that the IL-8/CXCR2 signaling axis promotes VM in TNBC by facilitating EMT. Therefore, therapies targeting IL-8/CXCR2 may be used to suppress EMT and VM in TNBC simultaneously.

Keywords
Epithelial-mesenchymal transition
Interleukin-8
CXC chemokine receptor 2
Triple-negative breast cancer
Vasculogenic mimicry
Funding
Saheed Abdulkarim was supported by a DELTAS Africa grant (DEL-15-007: Awandare). This research was funded in whole, or in part, by the Wellcome Trust (DEL-15-007) and the UK Foreign, Commonwealth & Development Office, with support from the Developing Excellence in Leadership, Training, and Science in Africa (DELTAS Africa) program.
References
  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-249. doi: 10.3322/caac.21660

 

  1. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013;24(9):2206-2223. doi: 10.1093/annonc/mdt303

 

  1. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5

 

  1. Luo Q, Wang J, Zhao W, et al. Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol. 2020;13(1):19. doi: 10.1186/s13045-020-00858-6

 

  1. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Clin Pathol. 1999;155(3):739-752. doi: 10.1016/S0002-9440(10)65173-5

 

  1. Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis-interest in making it a therapeutic target. Pharmacol Ther. 2021;223:107805. doi: 10.1016/j.pharmthera.2021.107805

 

  1. Morales-Guadarrama G, García-Becerra R, Méndez-Pérez EA, García-Quiroz J, Avila E, Díaz L. Vasculogenic mimicry in breast cancer: Clinical relevance and drivers. Cells. 2021;10:1758. doi: 10.3390/cells10071758

 

  1. Chin VL, Lim CL. Epithelial-mesenchymal plasticity-engaging stemness in an interplay of phenotypes. Stem Cell Investig. 2019;6:25. doi: 10.21037/sci.2019.08.08

 

  1. Vu T, Datta PK. Regulation of EMT in colorectal cancer: A culprit in metastasis. Cancers (Basel). 2017;9(12):171. doi: 10.3390/CANCERS9120171

 

  1. Palena C, Hamilton DH, Fernando RI. Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol. 2012;8(6):713-722. doi: 10.2217/fon.12.59

 

  1. Trivanović D, Jauković A, Krstić J, et al. Inflammatory cytokines prime adipose tissue mesenchymal stem cells to enhance malignancy of MCF-7 breast cancer cells via transforming growth factor-β1. IUBMB Life. 2016;68(3):190-200. doi: 10.1002/iub.1473

 

  1. Méndez-García LA, Nava-Castro KE, Ochoa-Mercado TD, et al. Breast cancer metastasis: Are cytokines important players during its development and progression? J Interferon Cytokine Res. 2019;39(1):39-55. doi: 10.1089/jir.2018.0024

 

  1. Soria G, Ofri-Shahak M, Haas I, et al. Inflammatory mediators in breast cancer: Coordinated expression of TNFα and IL-1β with CCL2 and CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer. 2011;11:130. doi: 10.1186/1471-2407-11-130

 

  1. Gyamfi J, Lee YH, Eom M, Choi J. Interleukin-6/ STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 2018;8(1):8859. doi: 10.1038/s41598-018-27184-9

 

  1. Manore SG, Doheny DL, Wong GL, Lo HW. IL-6/JAK/ STAT3 signaling in breast cancer metastasis: Biology and treatment. Front Oncol. 2022;12:866014. doi: 10.3389/fonc.2022.866014

 

  1. Abaurrea A, Araujo AM, Caffarel MM. The role of the il-6 cytokine family in epithelial-mesenchymal plasticity in cancer progression. Int J Mol Sci. 2021;22(15):8334. doi: 10.3390/ijms22158334

 

  1. Baba AB, Rah B, Bhat GR, et al. Transforming growth factor-beta (TGF-β) signaling in cancer-a betrayal within. Front Pharmacol. 2022;13:791272. doi: 10.3389/fphar.2022.791272

 

  1. Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-β. Future Oncol. 2009;5(8):1145-1168. doi: 10.2217/fon.09.90

 

  1. Long X, Ye Y, Zhang L, et al. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol. 2016;48:5-12. doi: 10.3892/ijo.2015.3234

 

  1. Fan Y, He S. The characteristics of tumor microenvironment in triple negative breast cancer. Cancer Manag Res. 2022;14:1-17. doi: 10.2147/CMAR.S316700

 

  1. Deng F, Weng Y, Li X, Wang T, Fan M, Shi Q. Overexpression of IL-8 promotes cell migration via PI3K-Akt signaling pathway and EMT in triple-negative breast cancer. Pathol Res Pract. 2020;216(4):152902. doi: 10.1016/j.prp.2020.152902

 

  1. Sharma I, Singh A, Siraj F, Saxena S. IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J Biomed Sci. 2018;25:62. doi: 10.1186/s12929-018-0464-y

 

  1. Angara K, Borin TF, Rashid MH, et al. CXCR2-expressing tumor cells drive vascular mimicry in antiangiogenic therapy-resistant glioblastoma. Neoplasia. 2018;20(10):1070-1082. doi: 10.1016/j.neo.2018.08.011

 

  1. Aikins AR, Kim MJ, Raymundo B, Kim CW. Downregulation of transgelin blocks interleukin-8 utilization and suppresses vasculogenic mimicry in breast cancer cells. Exp Biol Med (Maywood). 2017;242:573-583. doi: 10.1177/1535370216685435

 

  1. Bates RC, DeLeo MJ 3rd, Mercurio AM. The epithelial-mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res. 2004;299(2):315-324. doi: 10.1016/j.yexcr.2004.05.033

 

  1. Hwang WL, Yang MH, Tsai ML, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology. 2011;141(1):279-291, 291.e1-5. doi: 10.1053/j.gastro.2011.04.008

 

  1. Wen J, Zhao Z, Huang L, Wang L, Miao Y, Wu J. IL-8 promotes cell migration through regulating EMT by activating the Wnt/β-catenin pathway in ovarian cancer. J Cell Mol Med. 2020;24:1588-1598. doi: 10.1111/jcmm.14848

 

  1. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 2011;71(15):5296-5306. doi: 10.1158/0008-5472.CAN-11-0156

 

  1. Fu XT, Dai Z, Song K, et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol. 2015;46(2):587-596. doi: 10.3892/ijo.2014.2761

 

  1. Buerger H, Boecker F, Packeisen J, Agelopoulos K, Poos K, Nadler W, Korsching E. Analyzing the basic principles of tissue microarray data measuring the cooperative phenomena of marker proteins in invasive breast cancer. Open Access Bioinform. 2013;5:1-21. doi: 10.2147/OAB.S36565

 

  1. Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline update. Arch Pathol Lab Med. 2013;138(2):241-256. doi: 10.5858/arpa.2013-0953-SA

 

  1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-408. doi: 10.1006/meth.2001.1262

 

  1. Der EM, Gyasi RK, Tettey Y, et al. Triple-negative breast cancer in ghanaian women: The Korle Bu teaching hospital experience. Breast J. 2015;21(6):627-633. doi: 10.1111/tbj.12527

 

  1. Chavey C, Bibeau F, Gourgou-Bourgade S, et al. Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res. 2007;9(1):R15. doi: 10.1186/bcr1648

 

  1. Vazquez-martin A, Colomer R, Menendez JA. Protein array technology to detect HER2 (erbB-2)-induced ‘cytokine signature’ in breast cancer. Eur J Cancer. 2007;43(7):1117-1124. doi: 10.1016/j.ejca.2007.01.037

 

  1. Winter M, Meignan S, Völkel P, et al. Vimentin promotes the aggressiveness of triple negative breast cancer cells surviving chemotherapeutic treatment. Cells. 2021;10(6):1504. doi: 10.3390/cells10061504

 

  1. Kim HS, Won YJ, Shim JH, et al. Morphological characteristics of vasculogenic mimicry and its correlation with EphA2 expression in gastric adenocarcinoma. Sci Rep. 2019;9(1):3414. doi: 10.1038/s41598-019-40265-7

 

  1. Du M, Qiu Q, Gruslin A, et al. SB225002 promotes mitotic catastrophe in chemo-sensitive and-resistant ovarian cancer cells independent of p53 status in vitro. PLoS One. 2013;8(1):e54572. doi: 10.1371/journal.pone.0054572

 

  1. White JR, Lee JM, Young PR, et al. Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem. 1998;273(17):10095-10098. doi: 10.1074/jbc.273.17.10095

 

  1. Hartman ZC, Poage GM, Den Hollander P, et al. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 2013;73(11):3470-3480. doi: 10.1158/0008-5472.CAN-12-4524-T

 

  1. Qiao L, Liang N, Zhang J, et al. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med. 2015;19(2):315-326. doi: 10.1111/jcmm.12496
Conflict of interest
The authors declare that they have no competing interests.
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing