Cite this article
54
Download
489
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
MINI-REVIEW

An Update on Nanomaterial-assisted Biosensing Systems for Discriminative Diagnosis of Breast Cancer

Subash C.B. Gopinath1,2,3* Thangavel Lakshmipriya2
Show Less
1 Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
3 Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia
CP 2023, 5(3), 2589
Submitted: 20 July 2023 | Accepted: 24 August 2023 | Published: 8 September 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Breast cancer is one of the top causes of death among women worldwide. Precise diagnosis of breast cancer provides opportunities for early treatment and reduces the death rate with increasing patient lifespan. Biosensors are the diagnostic platform involving different materials for the biomarker detection to the recurrence and monitoring of drug for breast cancer. Improving biosensor with higher sensitivity and selectivity is mandatory to develop a point-of-care detection system. Nanostructured metals and semiconductors are showing greater interest in the development of biosensors due to their higher surface area, solubility, good electrical conductivity, and appealing optical properties. Nanomaterials are generally used for amplifying the signal, and immobilizing biomolecules and electroactive species. Nanomaterial-based biosensor enhanced the target identification and helps to diagnose diseases at their earlier stages. This review discusses breast cancer biomarkers, and the recent development of diagnosing systems with nanomaterial-assisted biosensor.

Keywords
Breast cancer
Nanomaterial
Biosensor
Nanotechnology
Funding
None.
References
  1. Mendes IL, das Neves MF, Lopes FS. Biosensor applicability in breast cancer diagnosis. Int J Biosens Bioelectron. 2019;5(4):125-130. doi:10.15406/ijbsbe.2019. 05.00165

 

  1. Dromain C, Boyer B, Ferré R, Canale S, Delaloge S, Balleyguier C. Computed-aided diagnosis (CAD) in the detection of breast cancer. Eur J Radiol. 2013;82(3):417-423. doi:10.1016/j.ejrad.2012.03.005

 

  1. Rodríguez-Ruiz A, Krupinski E, Mordang JJ, et al. Detection of breast cancer with mammography: Effect of an artificial intelligence support system. Radiology. 2019;290(2):1-10. doi:10.1148/radiol.2018181371

 

  1. Brooks AD, Nover AB, Jagtap S, et al. Modern breast cancer detection: A technological review. Int J Biomed Imaging. Published online 2009:902326. doi:10.1155/2009/902326

 

  1. Selwyna PGC, Loganathan PR, Begam KH. Development of electrochemical biosensor for breast cancer detection using gold nanoparticle doped CA 15-3 antibody and antigen interaction. In: International Conference on Signal Processing, Image Processing and Pattern Recognition 2013, ICSIPR 2013. ; 2013:75-81. doi:10.1109/ ICSIPR.2013.6497963

 

  1. Cui M, Wang Y, Wang H, Wu Y, Luo X. A label-free electrochemical DNA biosensor for breast cancer marker BRCA1 based on self-assembled antifouling peptide monolayer. Sens Actuators B Chem. 2017;244(6):742-749. doi:10.1016/j.snb.2017.01.060

 

  1. Sountharrajan S, Karthiga M, Suganya E, Rajan C. Automatic classification on bio medical prognosisof invasive breast cancer. Asian Pacific Journal of Cancer Prevention. 2017;18(9):2541-2544. doi:10.22034/APJCP. 2017.18.9.2541

 

  1. Chang K, Pi Y, Lu W, et al. Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array. Biosens Bioelectron. 2014;60(10):318-324. doi:10.1016/j.bios. 2014.04.027

 

  1. Zhao J, Chang W, Liu L, et al. Graphene oxide-gold nanoparticle-aptamer complexed probe for detecting amyloid beta oligomer by ELISA-based immunoassay. J Immunol Methods. 2021;489(September 2020):112942. doi:10.1016/j.jim.2020.112942

 

  1. Zhou D, Gopinath SCB, Mohamed Saheed MS, Siva Sangu S, Lakshmipriya T. Mxene surface on multiple junction triangles for determining osteosarcoma cancer biomarker by dielectrode microgap sensor. Int J Nanomedicine. 2020;15:10171-10181. doi:10.2147/IJN.S284752

 

  1. Zhou H, Yang D, Mircescu NE, et al. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchimica Acta. 2015;182(13-14):2259-2266. doi:10.1007/s00604-015-1570-0

 

  1. Zeng R, Huang Z, Wang Y, Tang D. Enzyme-Encapsulated DNA Hydrogel for Highly Efficient Electrochemical Sensing Glucose. ChemElectroChem. 2020;7(7):1537-1541. doi:10.1002/celc.202000105

 

  1. An JH, Park SJ, Kwon OS, Bae J, Jang J. High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano. 2013;7(12):10563-10571. doi:10.1021/ nn402702w

 

  1. Smith JE, Griffin DK, Leny JK, Hagen JA, Chávez JL, Kelley-Loughnane N. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta. 2014;121:247-255. doi:10.1016/j.talanta.2013.12. 062

 

  1. Letchumanan I, Gopinath SCB, Arshad MKM. Divalent ion-induced aggregation of gold nanoparticles for voltammetry Immunosensing: comparison of transducer signals in an assay for the squamous cell carcinoma antigen. Microchimica Acta. 2020;187:128. doi:10.1007/s00604- 020-4115-0

 

  1. Aragay G, Merkoçi A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta. 2012;84:49-61. doi:10.1016/j.electacta.2012.04.044

 

  1. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent Advances in Biosensor Technology for Potential Applications – An Overview. Front Bioeng Biotechnol. 2016;4. doi:10.3389/fbioe.2016.00011

 

  1. Li Y, Schluesener HJ, Xu S. Gold nanoparticle-based biosensors. Gold Bull. 2010;43(1):29-41. doi:10.1007/BF03214964

 

  1. Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev. 2014;43(3):744-764. doi:10.1039/c3cs60273g

 

  1. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem. 2008;80(4):1067-1072. doi:10.1021/ac702037y

 

  1. Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials. Published online 2019:861. doi:10.3390/nano9060861

 

  1. Liang T, Qu Q, Chang Y, Gopinath SCB, Liu XT. Diagnosing ovarian cancer by identifying SCC-antigen on a multiwalled carbon nanotube-modified dielectrode sensor. Biotechnol Appl Biochem. 2019;66(6):939-944. doi: 10.1002/bab.1808

 

  1. Liu C, Gopinath SCB, Lakshmipriya T, Anbu P. Covalent conjugation of reduced graphene oxide with oligos for current–volt signal determination on leukemia. Appl Phys A Mater Sci Process. 2020;126(8):599. doi:10.1007/s00339- 020-03769-y

 

  1. Pal S, Alocilja EC. Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens Bioelectron. 2009;5(1):1437-1444. doi:10.1016/j.bios.2008.08.020

 

  1. Zhang W, Li K, Guo J, et al. Sensitive identification of prostate-specific antigen by iron oxide nanoparticle antibody conjugates on the gap-finger electrode surface. Biotechnol Appl Biochem. 2020;68(4):896-901. doi: 10.1002/bab.2012

 

  1. Yu Z, Gopinath SCB, Lakshmipriya T, Anbu P. Single-walled carbon nanotube-gold urchin nanohybrid for identifying gastric cancer on dimicroelectrodes junction. J Taiwan Inst Chem Eng. 2021;121. doi:10.1016/j.jtice. 2021.04.016

 

  1. Li X, Ma F, Yang M, Zhang J. Nanomaterial based analytical methods for breast cancer biomarker detection. Mater Today Adv. 2022;14:100219. doi:10.1016/j.mtadv. 2022.100219

 

  1. Singh R, Priye V. Non-invasive detection and discrimination of breast tumors at early stage using spiral antenna. Frequenz. 2021;75(3):135-142. doi:10.1515/freq-2020-0084

 

  1. Haghighi AH, Khorasani MT, Faghih Z, Farjadian F. Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. Heliyon. 2020;6(4):E03677. doi:10.1016/j.heliyon.2020.e03677

 

  1. Uehiro N, Sato F, Pu F, et al. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. Breast Cancer Research. 2016;18(1):129-214. doi:10.1186/ s13058-016-0788-z

 

  1. Ishibashi Y, Ohtsu H, Ikemura M, et al. Serum TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer. Sci Rep. 2017;7(1):4846-4910. doi:10.1038/s41598-017-05129-y

 

  1. Ma J, Kong Y, Nan H, et al. Pleiotrophin as a potential biomarker in breast cancer patients. Clinica Chimica Acta. 2017;466:6-12. doi:10.1016/j.cca.2016.12.030

 

  1. Lu M, Ju S, Shen X, et al. Combined detection of plasma MIR-127-3p and HE4 improves the diagnostic efficacy of breast cancer. Cancer Biomarkers. 2017;18(2):143-148. doi:10.3233/CBM-160024

 

  1. Ławicki S, Zajkowska M, Głażewska EK, Będkowska GE, Szmitkowski M. Plasma levels and diagnostic utility of VEGF, MMP-9, and TIMP-1 in the diagnosis of patients with breast cancer. Onco Targets Ther. 2016;9:911-919. doi:10.2147/OTT.S99959

 

  1. Song D, Yue L, Zhang J, et al. Diagnostic and prognostic significance of serum apolipoprotein C-I in triple-negative breast cancer based on mass spectrometry. Cancer Biol Ther. 2016;17(6):635-647. doi:10.1080/15384047.2016.1156262

 

  1. Rafiee-Pour HA, Behpour M, Keshavarz M. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: Application to breast cancer biomarker miRNA-21. Biosens Bioelectron. 2016;77:202-207. doi:10.1016/j.bios.2015.09.025

 

  1. Hakimian F, Ghourchian H, Hashemi AS, Arastoo MR, Behnam Rad M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep. 2018;8(2):2943. doi:10.1038/ s41598-018-20229-z

 

  1. Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Amperometric Biosensing of miRNA-21 in Serum and Cancer Cells at Nanostructured Platforms Using Anti-DNA-RNA Hybrid Antibodies. ACS Omega. 2018;3(8):8923-8931. doi:10.1021/acsomega.8b00986

 

  1. Jia LP, Zhao RJ, Feng Z, et al. Ultrasensitive electrochemical detection of circulating tumor DNA by hollow polymeric nanospheres and dual enzyme assisted target amplification strategy. Sens Actuators B Chem. 2022;350:130849. doi:10.1016/j.snb.2021.130849

 

  1. Ding Y, Tian Q, Dong Y, Xing L, Gopinath SCB, Mao Y. Gold-silane complexed antibody immobilization on polystyrene ELISA surface for enhanced determination of matrix Metalloproteinase-9. Process Biochemistry. 2021;100:231-236. doi:10.1016/j.procbio.2020.10.010

 

  1. Cheng J long, Liu XP, Chen JS, Mao C jie, Jin BK. Highly sensitive electrochemiluminescence biosensor for VEGF165 detection based on a g-C3N4/PDDA/CdSe nanocomposite. Anal Bioanal Chem. 2020;412(13):3073-3081. doi:10.1007/s00216-020-02552-5

 

  1. Yuan J, Duan R, Yang H, Luo X, Xi M. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int J Nanomedicine. 2012;7:2921-2928. doi:10.2147/IJN.S32641

 

  1. Szymanska B, Lukaszewski Z, Zelazowska-Rutkowska B, Hermanowicz-Szamatowicz K, Gorodkiewicz E. An spri biosensor for determination of the ovarian cancer marker he4 in human plasma. Sensors. 2021;21(10):3567. doi:10.3390/s21103567

 

  1. Karpik AE, Crulhas BP, Rodrigues CB, Castro GR, Pedrosa VA. Aptamer-based Biosensor Developed to Monitor MUC1 Released by Prostate Cancer Cells. Electroanalysis. 2017;29(10):2246-2253. doi:10.1002/elan.201700318

 

  1. Cristofanilli M, Pierga JY, Reuben J, et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit Rev Oncol Hematol. 2019;134:102855. doi:10.1016/j.critrevonc.2018.12.004

 

  1. Thery L, Meddis A, Cabel L, et al. Circulating Tumor Cells in Early Breast Cancer. JNCI Cancer Spectr. 2019;3(2):pkz026. doi:10.1093/JNCICS/PKZ026

 

  1. Chen X, Xu P, Lin W, et al. Label-free detection of breast cancer cells using a functionalized tilted fiber grating. Biomed Opt Express. 2022;13(4):2117-2129. doi:10.1364/ boe.454645

 

  1. Yadav BS, Chanana P, Jhamb S. Biomarkers in triple negative breast cancer: A review. World J Clin Oncol. 2015;6(6):252-263. doi:10.5306/wjco.v6.i6.252

 

  1. da Silva JL, Cardoso Nunes NC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: A thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855. doi:10.1016/j.critrevonc.2019.102855

 

  1. Sun S, Wang Y, Ming T, et al. An origami paper-based nanoformulated immunosensor detects picograms of VEGF-C per milliliter of blood. Commun Biol. 2021;4(1):121. doi:10.1038/s42003-020-01607-8

 

  1. Ghavamipour F, Rahmani H, Shanehsaz M, Khajeh K, Mirshahi M, Sajedi RH. Enhanced sensitivity of VEGF detection using catalase-mediated chemiluminescence immunoassay based on CdTe QD/H2O2 system. J Nanobiotechnology. 2020;18(1):93. doi:10.1186/s12951- 020-00648-9

 

  1. Salahandish R, Ghaffarinejad A, Naghib SM, Majidzadeh-A K, Zargartalebi H, Sanati-Nezhad A. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer. Biosens Bioelectron. 2018;117(10):104-111. doi:10.1016/ j.bios.2018.05.043

 

  1. Shahbazi N, Zare-Dorabei R, Naghib SM. Design of a Ratiometric Plasmonic Biosensor for Herceptin Detection in HER2-Positive Breast Cancer. ACS Biomater Sci Eng. 2022;8(2):871-879. doi:10.1021/acsbiomaterials.1c01369
Conflict of interest
There are no conflicts to declare.
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing