Cite this article
220
Download
1180
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Microbial Architects of Malignancy: Exploring the Gut Microbiome’s Influence in Cancer Initiation and Progression

Md. Fakruddin1,2* Md. Asaduzzaman Shishir3 Israk Iram Oyshe1 S.M. Tasbir Amin1 Amana Hossain1 Israt Jahan Sarna1 Nusrat Jerin1 Dipak Kumar Mitra2,4
Show Less
1 Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, Bangladesh
2 Interim Laboratory, Bangamata National Cellular and Molecular Research Center (BNCMRC), Mohakhali, Dhaka, Bangladesh
3 Department of Microbiology, Primeasia University, Banani, Dhaka, Bangladesh
4 Department of Public Health, North South University, Bashundhara, Dhaka, Bangladesh
CP 2023, 5(1), 397
Submitted: 9 June 2023 | Accepted: 23 August 2023 | Published: 27 September 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The gut microbiome, a complex community of microorganisms residing in the gastrointestinal tract, has emerged as a critical player in cancer initiation and progression. This review provides an overview of the intricate interactions between the gut microbiome and cancer, exploring the underlying mechanisms and potential therapeutic implications. The gut microbiome exerts profound effects on the immune system, modulating immune responses, and chronic inflammation, which are pivotal in cancer development. In addition, it influences metabolism by altering nutrient metabolism and producing metabolites that can directly impact cellular processes related to cancer progression. Furthermore, certain gut bacteria can induce DNA damage or modify DNA repair mechanisms, contributing to the initiation and promotion of cancer. Moreover, the gut microbiome can significantly influence the effectiveness and toxicity of anticancer therapies, potentially affecting treatment outcomes. Understanding these complex interactions holds promise for the development of strategies that target the gut microbiome to prevent and treat cancer more effectively. This review emphasizes the clinical relevance of the gut microbiome in cancer, including the identification of microbial biomarkers for cancer diagnosis and prognosis. Furthermore, it discusses potential challenges and future directions for research in this rapidly evolving field. Overall, unraveling the role of the gut microbiome in cancer initiation and progression provides valuable insights for advancing personalized cancer treatment and improving patient outcomes.

Keywords
Microbiome
Cancer
Initiation
Progression
Funding
None.
References
  1. Plottel CS, Blaser MJ, 2011, Microbiome and Malignancy. Cell Host Microbe, 10:324–35. DOI: 10.1016/j.chom.2011.10.003

 

  1. Yu J, Feng Q, Wong SH, et al., 2017, Metagenomic Analysis of Faecal Microbiome as a Tool Towards Targeted Non-invasive Biomarkers for Colorectal Cancer. Gut, 66:70–8. DOI: 10.1136/gutjnl-2015-309800

 

  1. Ren Z, Li A, Jiang J, et al., 2019, Gut Microbiome Analysis as a Tool Towards Targeted Non-invasive Biomarkers for Early Hepatocellular Carcinoma. Gut, 68:1014–23. DOI: 10.1136/gutjnl-2017-315084

 

  1. Ma C, Han M, Heinrich B, et al., 2018, Gut microbiome-mediated Bile Acid Metabolism Regulates Liver Cancer Via NKT Cells. Science, 360:eaan5931. DOI: 10.1126/science.aan5931

 

  1. Arthur JC, Gharaibeh RZ, Mühlbauer M, et al., 2014, Microbial Genomic Analysis Reveals the Essential Role of Inflammation in Bacteria-induced Colorectal Cancer. Nat Commun, 5:4724. DOI: 10.1038/ncomms5724

 

  1. Bhatt AP, Redinbo MR, Bultman SJ, 2017, The Role of the Microbiome in Cancer Development and Therapy. CA Cancer J Clin, 67:326–44. DOI: 10.3322/caac.21398

 

  1. Dapito DH, Mencin A, Gwak GY, et al., 2012, Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4. Cancer Cell, 21:504–16. DOI: 10.1016/j.ccr.2012.02.007

 

  1. Ridlon JM, Kang DJ, Hylemon PB, 2006, Bile Salt Biotransformations by Human Intestinal Bacteria. J Lipid Res, 47:241–59. DOI: 10.1194/jlr.R500013-JLR200

 

  1. Fuhrman BJ, Feigelson HS, Flores R, et al., 2014, Associations of the Fecal Microbiome with Urinary Estrogens and Estrogen Metabolites in Postmenopausal Women. J Clin Endocrinol Metab, 99:4632–40. DOI: 10.1210/jc.2014-2222

 

  1. Gonzalez CA, Travier N, Luján-Barroso L, et al., 2010, Dietary Factors and in situ and Invasive Cervical Cancer Risk in the European Prospective Investigation into Cancer and Nutrition Study. Int J Cancer, 129:449–59. DOI: 10.1002/ijc.25679

 

  1. Midtvedt T, 1974, Microbial Bile Acid Transformation. Am J Clin Nutr, 27:1341–7. DOI: 10.1093/ajcn/27.11.1341

 

  1. Flemer B, Warren RD, Barrett MP, et al., 2017, The Oral Microbiota in Colorectal Cancer is Distinctive and Predictive. Gut, 67:1454–63. DOI: 10.1136/gutjnl-2017-314814

 

  1. Loh YH, Jakszyn P, Luben RN, et al., 2011, N-Nitroso Compounds and Cancer Incidence: The European Prospective Investigation into Cancer and Nutrition (EPIC)- Norfolk Study. Am J Clin Nutr, 93:1053–61. DOI: 10.3945/ajcn.111.012377

 

  1. Donia MS, Fischbach MA, Hawn TR, 2014, HUMAN MICROBIOTA. Small Molecules from the Human Microbiota. Science, 349:1254766. DOI: 10.1126/science.1254766

 

  1. Azevedo MM, Pina-Vaz C, Baltazar F, 2020, Microbes and Cancer: Friends or Faux? Int J Mol Sci, 21:3115. DOI: 10.3390/ijms21093115

 

  1. Grivennikov SI, Wang K, Mucida D, et al., 2012, Adenoma-linked Barrier Defects and Microbial Products Drive IL-23/ IL-17-mediated Tumour Growth. Nature, 491:254–8. DOI: 10.1038/nature11465

 

  1. Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, et al., 2017, Evidence of the Anti-inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients, 9:555. DOI: 10.3390/nu9060555

 

  1. Sepich-Poore GD, Zitvogel L, Straussman R, et al., 2021, The Microbiome and Human Cancer. Science, 371:eabc4552. DOI: 10.1126/science.abc4552

 

  1. Belkaid Y, Hand TW, 2014, Role of the Microbiota in Immunity and Inflammation. Cell, 157:121–41. DOI: 10.1016/j.cell.2014.03.011

 

  1. Ge Y, Wang X, Guo Y, et al., 2021, Gut Microbiota Influence Tumor Development and Alter Interactions with the Human Immune System. J Exp Clin Cancer Res, 40:42. DOI: 10.1186/s13046-021-01845-6

 

  1. Dohlman AB, Klug J, Mesko M, et al., 2022, A Pan-cancer Mycobiome Analysis Reveals Fungal Involvement in Gastrointestinal and Lung Tumors. Cell, 185:3807–22.e12. DOI: 10.1016/j.cell.2022.09.015

 

  1. Kostic AD, Chun E, Robertson L, et al., 2013, Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-immune Microenvironment. Cell Host Microbe, 14:207–15. DOI: 10.1016/j.chom.2013.07.007

 

  1. Yoshimoto S, Loo TM, Atarashi K, et al., 2013, Obesity-induced Gut Microbial Metabolite Promotes Liver Cancer through Senescence Secretome. Nature, 499:97–101. DOI: 10.1038/nature12347

 

  1. Gopalakrishnan V, Helmink BA, Spencer CN, et al., 2018, The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell, 33:570–80. DOI: 10.1016/j.ccell.2018.03.015

 

  1. Routy B, Le Chatelier E, Derosa L, et al., 2018, Gut Microbiome Influences Efficacy of PD-1-based Immunotherapy Against Epithelial Tumors. Science, 359:91–7. DOI: 10.1126/science.aan3706

 

  1. Belcheva A, Irrazabal T, Robertson SJ, et al., 2014, Gut Microbial Metabolism Drives Transformation of MSH2- deficient Colon Epithelial Cells. Cell, 158:288–99. DOI: 10.1016/j.cell.2014.04.051

 

  1. Bertocchi A, Carloni S, Ravenda PS, et al., 2021, Gut Vascular Barrier Impairment Leads to Intestinal Bacteria Dissemination and Colorectal Cancer Metastasis to Liver. Cancer Cell, 39:708–24.e11. DOI: 10.1016/j.ccell.2021.03.004

 

  1. Liu J, Zhang Y, 2022, Intratumor Microbiome in Cancer Progression: Current Developments, Challenges and Future Trends. Biomark Res, 10:37. DOI: 10.1186/s40364-022-00381-5

 

  1. Arthur JC, Perez-Chanona E, Muhlbauer M, et al., 2012, Intestinal Inflammation Targets Cancer-inducing Activity of the Microbiota. Science, 338:120–3. DOI: 10.1126/science.1224820

 

  1. Zackular JP, Rogers MA, Ruffin MT 4th, et al., 2014, The Human Gut Microbiome as a Screening Tool for Colorectal Cancer. Cancer Prev Res (Phila), 7:1112–21. DOI: 10.1158/1940-6207.CAPR-14-0129

 

  1. Drewes JL, White JR, Dejea CM, et al., 2017, High-resolution Bacterial 16S rRNA Gene Profile Meta-analysis and Biofilm Status Reveal Common Colorectal Cancer Consortia. NPJ Biofilms Microbiomes, 3:34. DOI: 10.1038/s41522-017-0040-3

 

  1. Sears CL, Garrett WS, 2014, Microbes, Microbiota, and Colon Cancer. Cell Host Microbe, 15:317–28. DOI: 10.1016/j.chom.2014.02.007

 

  1. Yang Q, Wang B, Zheng Q, et al., 2023, A Review of Gut Microbiota-derived Metabolites in Tumor Progression and Cancer Therapy. Adv Sci (Weinh), 10:e2207366. DOI: 10.1002/advs.202207366

 

  1. Yamaoka Y, 2010, Mechanisms of Disease: Helicobacter pylori Virulence Factors. Nat Rev Gastroenterol Hepatol, 7:629–41. DOI: 10.1038/nrgastro.2010.154

 

  1. Amieva M, Peek RM Jr., 2016, Pathobiology of Helicobacter pylori-induced Gastric Cancer. Gastroenterology, 150:64–78. DOI: 10.1053/j.gastro.2015.09.004

 

  1. Eun CS, Kim BK, Han DS, et al., 2014, Differences in Gastric Mucosal Microbiota Profiling in Patients with Chronic Gastritis, Intestinal Metaplasia, and Gastric Cancer Using Pyrosequencing Methods. Helicobacter, 19:407–16. DOI: 10.1111/hel.12145

 

  1. Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, et al., 2018, Gastric Microbial Community Profiling Reveals a Dysbiotic Cancer-associated Microbiota. Gut, 67:226–36. DOI: 10.1136/gutjnl-2017-314205

 

  1. Wang L, Zhou J, Xin Y, et al., 2016, Bacterial Overgrowth and Diversification of Microbiota in Gastric Cancer. Eur J Gastroenterol Hepatol, 28:261–6. DOI: 10.1097/MEG.0000000000000542

 

  1. Yu LX, Schwabe RF, 2017, The Gut Microbiome and Liver Cancer: Mechanisms and Clinical Translation. Nat Rev Gastroenterol Hepatol, 14:527–39.

 

  1. Yoshimoto S, Okada Y, Suzuki K, et al., 2021, Gut Microbiota-dependent Metabolite Trimethylamine-N-oxide Promotes Metastasis of Hepatocellular Carcinoma. Cancer Sci, 112:4534–44.

 

  1. Ganesan R, Yoon SJ, Suk KT, 2023, Microbiome and Metabolomics in Liver Cancer: Scientific Technology. Int J Mol Sci, 24:537. DOI: 10.3390/ijms24010537

 

  1. Moreno-Gonzalez M, Beraza N, 2021, The Role of the Microbiome in Liver Cancer. Cancers (Basel), 13:2330. DOI: 10.3390/cancers13102330

 

  1. Riquelme E, Zhang Y, Zhang L, et al., 2019, Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178:795–806.e12. DOI: 10.1016/j.cell.2019.07.008

 

  1. Thomas RM, Jobin C, 2015, The Microbiome and Cancer: Is the ‘Oncobiome’ Mirage Real? Trends Cancer, 1:24–35. DOI: 10.1016/j.trecan.2015.07.00

 

  1. Pushalkar S, Hundeyin M, Daley D, et al., 2018, The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov, 8:403–16. DOI: 10.1158/2159-8290.CD-17-1134

 

  1. Aykut B, Pushalkar S, Chen R, et al., 2019, The Fungal Mycobiome Promotes Pancreatic Oncogenesis Via Activation of MBL. Nature, 574:264–7. DOI: 10.1038/s41586-019-1608-2

 

  1. Geller LT, Barzily-Rokni M, Danino T, et al., 2017, Potential Role of Intratumor Bacteria in Mediating Tumor Resistance to the Chemotherapeutic Drug Gemcitabine. Science, 357:1156–60. DOI: 10.1126/science.aah5043

 

  1. Sethi V, Vitiello GA, Saxena D, et al., 2019, The Role of the Microbiome in Immunologic Development and its Implication for Pancreatic Cancer Immunotherapy. Gastroenterology, 156:2097–15.e2. DOI: 10.1053/j.gastro.2018.12.045

 

  1. Vétizou M, Pitt JM, Daillère R, et al., 2015, Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science, 350:1079–84. DOI: 10.1126/science.aad1329

 

  1. Fu A, Yao B, Dong T, et al., 2022, Tumor-resident Intracellular Microbiota Promotes Metastatic Colonization in Breast Cancer. Cell, 185:1356–72.e26. DOI: 10.1016/j.cell.2022.02.027

 

  1. Wang Y, Du J, Wu X, et al., 2021, Crosstalk Between Autophagy and Microbiota in Cancer Progression. Mol Cancer, 20:163. DOI: 10.1186/s12943-021-01461-0

 

  1. Donohoe DR, Collins LB, Wali A, et al., 2012, The Warburg Effect Dictates the Mechanism of Butyrate-mediated Histone Acetylation and Cell Proliferation. Mol Cell, 48:612–26. DOI: 10.1016/j.molcel.2012.08.033

 

  1. Polk DB, Peek RM Jr., 2010, Helicobacter pylori: Gastric Cancer and Beyond. Nat Rev Cancer, 10:403–14. DOI: 10.1038/nrc2857

 

  1. Nougayrede JP, Homburg S, Taieb F, et al., 2006, Escherichia coli Induces DNA Double-strand Breaks in Eukaryotic Cells. Science, 313:848–51. DOI: 10.1126/science.1127059

 

  1. Wilson MR, Jiang Y, Villalta PW, et al., 2019, The Human Gut Bacterial Genotoxin Colibactin Alkylates DNA. Science, 363:eaar7785. DOI: 10.1126/science.aar7785

 

  1. Kostic AD, Gevers D, Pedamallu CS, et al., 2012, Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma. Genome Res, 22:292–8. DOI: 10.1101/gr.126573.111

 

  1. Yang L, Li A, Wang Y, et al., 2023, Intratumoral Microbiota: Roles in Cancer Initiation, Development and Therapeutic Efficacy. Signal Transduct Target Ther, 8:35. DOI: 10.1038/s41392-022-01304-4

 

  1. Biazzo M, Deidda G, 2022, Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med, 11:4119. DOI: 10.3390/jcm11144119

 

  1. Zhang X, Li H, Lv X, et al., 2022, Impact of Diets on Response to Immune Checkpoint Inhibitors (ICIs) Therapy Against Tumors. Life (Basel), 12:409.

 

  1. Singh NK, Beckett JM, Kalpurath K, et al., 2023, Synbiotics as Supplemental Therapy for the Alleviation of Chemotherapy-associated Symptoms in Patients with Solid Tumours. Nutrients, 15:1759. DOI: 10.3390/nu15071759

 

  1. Sivan A, Corrales L, Hubert N, et al., 2015, Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates anti-PD-L1 Efficacy. Science, 350:1084–9. DOI: 10.1126/science.aac4255

 

  1. Slizewska K, Markowiak-Kopec P, Slizewska W, 2021, The Role of Probiotics in Cancer Prevention. Cancers (Basel), 13:20. DOI: 10.3390/cancers13010020
Conflict of interest
The authors declare that there is no conflict of interest.
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing