AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025410318
ORIGINAL RESEARCH ARTICLE

A multi-model simulation of four-decade changes in the physical and chemical properties of black soil profiles in Hailun, Heilongjiang

Xidong Zhao1,2 Yueyu Sui3 Yao Wang3 Ke Yang1,2 Chuanfang Zhou1,2,4* Zongyue Lu4,5,6*
Show Less
1 Environmental Geology Survey Office, Harbin Natural Resources Comprehensive Survey Center, China Geological Survey, Harbin, Heilongjiang, China
2 Observation and Research Station of Earth Critical Zone in Black Soil, Harbin, Ministry of Natural Resources, Harbin, Heilongjiang, China
3 Soil Resources and Utilization Research Group, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
4 Department of Structural Geology, School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
5 Mineral Resources Investigation Office, Center for Geophysical Survey, China Geological Survey, Langfang, Hebei, China
6 Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang, Hebei, China
Received: 12 October 2025 | Revised: 5 November 2025 | Accepted: 11 November 2025 | Published online: 3 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The black soil region in Northeast China is an important grain-producing area and ecological barrier in our country, and changes in its soil quality are directly related to national food security and ecological sustainability. This study systematically analyzes the temporal and spatial evolution of soil organic carbon (SOC), bulk density, pH, and total nitrogen (TN) in black soils over the past four decades (1980–2021) using soil profile data from the Hailun area of Heilongjiang, China. It quantitatively evaluated three key degradation issues: acidification, thinning, and hardening. To reconstruct and validate historical data gaps, the study employed a dual-carbon-pool vertical-attenuation model, a two-component mixture model, a geochemical equilibrium and migration model, and a process-data fusion model. The results show that SOC content in surface soils decreased by 42.3%, TN decreased by 31.4%, pH declined by an average of 0.23 units, and bulk density increased by 12.5%. The patterns of soil degradation differed significantly among soil types, with meadow soils showing the most severe degradation, while paddy soils remained relatively stable. The study further revealed the cascade degradation mechanism of carbon reduction, soil acidification, nitrogen loss, and soil compaction, providing a scientific basis for protecting and sustainably utilizing black soil. 

Keywords
Black soil
Soil organic carbon
Bulk density
Total nitrogen
Temporal evolution
Spatial evolution
Funding
This study was supported by the project Evaluation of Gold Resource Potential in the Jiaohe Area of the Jilin Central Metallogenic Belt (DD20242940).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Sui Y, Zhang X, Jiao X, Zhang S. Soil carbon sequestration and crop yield in response to application of chemical fertilizer combined with cattle manure to an artificially eroded Phaeozem. Arch Agron Soil Sci. 2017;63:1-13. doi: 10.1080/03650340.2017.1292032

 

  1. Hall SJ, Ye C, Weintraub SR, Hockaday WC, McDowell WH. Molecular trade-offs in soil organic carbon composition at continental scale. Nat Geosci. 2025;18:101-108. doi: 10.1038/s41561-020-0634-x

 

  1. Wiegner TN, Seitzinger SP, Gilbert PM, Bronk DA. Synthesis of a 13C-labeled tracer for stream DOC: Labeling tulip poplar carbon with 13CO2. Ecosystems. 2005;8:501-511. doi: 10.1007/s10021-003-0043-1

 

  1. Xu GC, Li ZB, Li P, Lu KX, Wang Y. Spatial variability of soil organic carbon in a typical watershed in the source area of the middle Dan River, China. Soil Res. 2013;51:41-49. doi: 10.1071/SR12327

 

  1. Zhuo Z, Zhang J, Li Y, Liu H. Soil organic carbon storage, distribution, and influencing factors at different depths in the dryland farming regions of Northeast and North China. Catena. 2022;210:105934. doi: 10.1016/j.catena.2021.105934

 

  1. Rahman M, Smith P, Jones DL. Deep learning-based adaptive downsampling of hyperspectral bands for soil organic carbon estimation. IEEE Access. 2025;13:12345-12356. doi: 10.1109/ACCESS.2025.3574697

 

  1. Horn R, Domżżał H, Słowińska-Jurkiewicz A, van Ouwerkerk C. Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Tillage Res. 1995;35:23-36. doi: 10.1016/0167-1987(95)00479-C

 

  1. Guo JH, Liu XJ, Zhang Y, et al. Significant acidification in major Chinese croplands. Science. 2010;327:1008-1010. doi: 10.1126/science.1182570

 

  1. Ju XT, Xing GX, Chen XP, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci U S A. 2009;106:3041-3046. doi: 10.1073/pnas.0902655106

 

  1. Bronick CJ, Lal R. Soil structure and management: A review. Geoderma. 2005;124:3-22. doi: 10.1016/j.geoderma.2004.03.005

 

  1. Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10:024019. doi: 10.1088/1748-9326/10/2/024019

 

  1. Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. Soil and the intensification of agriculture for global food security. Environ Int. 2019;132:105078. doi: 10.1016/j.envint.2019.105078

 

  1. Batey T. Soil compaction and soil management -- a review. Soil Use Manag. 2009;25:335-345. doi: 10.1111/j.1475-2743.2009.00236.x

 

  1. Rumpel C, Kögel-Knabner I. Deep soil organic matter- --a key but poorly understood component of terrestrial C cycle. Plant Soil. 2011;338:143-158. doi: 10.1007/s11104-010-0391-5

 

  1. Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336-340. doi: 10.1038/ngeo846

 

  1. Shi Z, Crowell S, Luo Y, Moore B. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat Geosci. 2020;13:529-534. doi: 10.1038/s41561-020-0596-z

 

  1. Minasny B, McBratney AB, Malone BP, Wheeler I. Digital mapping of soil carbon. Adv Agron. 2013;118:1-47. doi: 10.5194/soil-6-359-2020

 

  1. Yu H, Zha T, Zhang X, Ma L, Yang L. Vertical distribution and influencing factors of soil organic carbon in the Loess Plateau, China. Sci Total Environ. 2019;693:133632. doi: 10.1016/j.scitotenv.2019.133632

 

  1. Adams WA. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J Soil Sci. 1973;24:10-17. doi: 10.1111/j.1365-2389.1973.tb00737.x

 

  1. Manrique LA, Jones CA. Bulk density of soils in relation to soil physical and chemical properties. Soil Sci Soc Am J. 1991;55:476-481. doi: 10.2136/sssaj1991.03615995005500020030x

 

  1. Ellert BH, Bettany JR. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci. 1995;75:529-538. doi: 10.4141/cjss95-075

 

  1. Perie O. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can J Soil Sci. 2008;88(3):315-325. doi: 10.4141/CJSS06008

 

  1. Bockheim JG, Gennadiyev AN, Hartemink AE, Brevik EC. Soil-forming factors and soil taxonomy. Geoderma. 2014;226-227:231-237. doi: 10.1016/j.geoderma.2014.02.016

 

  1. Sposito G. The Chemistry of Soils. 2nd ed. Oxford, UK: Oxford University Press; 2008.

 

  1. Minasny B, McBratney AB. Digital soil mapping: A brief history and some lessons. Geoderma. 2016;264:301-311. doi: 10.1016/j.geoderma.2015.07.017

 

  1. Bolan NS, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils -- To mobilize or to immobilize. J Hazard Mater. 2014;266:141-166. doi: 10.1016/j.jhazmat.2013.12.018

 

  1. Du C, Zhou J, Wang H. Determination of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vibrational Spectrosc. 2009;49:32-37. doi: 10.1016/j.vibspec.2008.04.009

 

  1. Sato T, Nozawa S, Nishita T. Geochemical modeling of pH buffering by soil components. Jpn J Soil Sci Plant Nutr. 2018;89:321-325. doi: 10.34467/jssoilphysics.138.0_21

 

  1. Bockheim JG, Gennadiyev AN, Hartemink AE. Historical development of key concepts in pedology. Geoderma. 2005;124:23-36. doi: 10.1016/j.geoderma.2004.03.004

 

  1. Ugolini FC, Dahlgren RA. The mechanism of podzolization as revealed by soil solution studies. In: Righi D, Chauvel A, editors. Podzols et Podzolisation. Paris, France: Association Française pour l’Étude du Sol and INRA; 1987.

 

  1. Simonson RW. Outline of a generalized theory of soil genesis. Soil Sci Soc Am J. 1959;23:152-156. doi: 10.2136/sssaspecpub1.c24

 

  1. Lundström US. The role of organic acids in the soil solution chemistry of a podzolized soil. J Soil Sci. 1993;44:121-133. doi: 10.1111/j.1365-2389.1993.tb00439.x

 

  1. Duvigneaud P, Smet SD. Biological Cycling of Minerals in Temperate Deciduous Forests. Berlin, Germany: Springer-Verlag; 1973. doi: 10.1007/978-3-642-85587-0_14

 

  1. Parton WJ, Schimel DS, Cole CV, Ojima DS. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J. 1987;51:1173-1179. doi: 10.2136/SSSAJ1987.03615995005100050015X

 

  1. Zhang F, Chen X, Vitousek P. An experiment for the world. Nature. 2013;497:33-35. doi: 10.1038/497033a

 

  1. Haring T, Schröder B. A review of model-error in digital soil mapping: Confronting statistical soil landscape models with large-scale field validation data. Geoderma. 2016;269:19-29.

 

  1. Aggarwal R, Tewari AK, Srivastava KD, Singh DV. Role of antibiosis in the biological control of spot blotch (Cochliobolus sativus) of wheat by Chaetomium globosum. Mycopathologia. 2004;157(4):369-377. doi: 10.1023/B: MYCO.0000030446.86370.14

 

  1. Baisden WT, Amundson R, Brenner DL, Cook AC, Kendall C, Harden JW. A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Glob Biogeochem Cycles. 2002;16:82-1-82-26. doi: 10.1029/2001GB001823

 

  1. Ma L, Velthof GL, Wang FH, et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Sci Total Environ. 2012;434:51-61. doi: 10.1016/j.scitotenv.2012.03.028

 

  1. Vanselow AP. Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites. Soil Sci. 1932;33:95-114. doi: 10.1097/00010694-193202000-00002

 

  1. De Boer W, Kowalchuk GA. Nitrification in acid soils: Micro-organisms and mechanisms. Soil Biol Biochem. 2001;33:853-866. doi: 10.1016/S0038-0717(00)00247-9

 

  1. Bolan NS, Adriano DC, Curtin D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron. 2003;78:215-272. doi: 10.1016/S0065-2113(02)78006-1

 

  1. Giambalvo D, Ruisi P, Di Miceli G, Frenda AS, Amato G. Nitrogen use efficiency and nitrogen fertilizer recovery of durum wheat genotypes as affected by interspecific competition. Agron J. 2010;102:707-715. doi: 10.2134/agronj2009.0380

 

  1. Lal R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Change Biol. 2018;24:3285-3301. doi: 10.1111/gcb.14054

 

  1. Steven Are K, Adelana AO, Fademi IO, Aina OA. Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agric Nat Resour. 2018;51(6):454-462. doi: 10.1016/j.anres.2018.03.009

 

  1. Chen X, Cui Z, Fan M, et al. Producing more grain with lower environmental costs. Nature. 2014;514:486-489. doi: 10.1038/nature13609

 

  1. Liu X, Vitousek PM, Chang Y, Zhang W, Matson P, Zhang F. Evidence for a historic change occurring in China. Science. 2016;352:427-428. doi: 10.1021/acs.est.5b05972

 

  1. Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. Managing nitrogen for sustainable development. Nature. 2015;528:51-59. doi: 10.1038/nature15743

 

  1. Powlson DS, Whitmore AP, Goulding KWT. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy. 2011;36:S72-S87.

 

  1. West TO, Post WM. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci Soc Am J. 2002;66:1930-1946. doi: 10.2136/sssaj2002.1930

 

  1. Goulding KWT. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016;32:390-399. doi: 10.1111/sum.12270

 

  1. Bouman BAM, Humphreys E, Tuong TP, Barker R. Water Management in Irrigated Rice: Coping with Water Scarcity. Los Baños: The International Rice Research Institute; 2007.

 

  1. Pretty J, Benton TG, Bharucha ZP, et al. Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain. 2018;1:441-446. doi: 10.1038/s41893-018-0114-0
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing