AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025370288
ORIGINAL RESEARCH ARTICLE

Synthesis of lanthanum oxide/Zeolite Socony Mobil-5 composite and its catalytic activity in formaldehyde degradation

Qingguo Ma1* Sai Yuan1 Ye Yuan1 Jun Zhong1 Ran Wang1 Yujie Gong1 Qin Gao1
Show Less
1 Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, Shanxi, China
Received: 8 September 2025 | Revised: 3 November 2025 | Accepted: 7 November 2025 | Published online: 27 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Formaldehyde reacts with proteins, causing their denaturation and exhibiting high toxicity, carcinogenicity, and teratogenicity. In this study, lanthanum (La) oxide (La2O3)/zeolite Socony Mobil-5 (ZSM-5) catalyst was synthesized using the equal-volume impregnation method, and formaldehyde in wastewater was efficiently degraded using this catalyst and hydrogen peroxide (H2O2) as the oxidant. Based on thermogravimetric analysis of La2O3/ZSM-5, ZSM-5, and La (III) nitrate hexahydrate, the optimal calcination temperature of the La2O3/ZSM-5 precursor was determined to be 600°C. X-ray powder diffraction and transmission electron microscopy analyses revealed that La2O3 was well dispersed on ZSM-5. The effects of La2O3 loading, catalyst dosage, H2O2 concentration, initial formaldehyde concentration, and solution pH on the degradation rate were systematically investigated. The catalyst exhibited dual functionality, enabling both adsorption and activation of formaldehyde and H2O2 molecules. Under optimized conditions—10 wt% La2O3, 50 mg/mL catalyst dosage, a molar ratio of H2O2 to formaldehyde of 3, pH 5–11, and a reaction time of 20 min—the degradation rate of formaldehyde exceeded 95%. This technique can effectively treat formaldehyde concentrations up to 1.497 mg/mL. This finding offers guidance for designing efficient catalysts applicable to non-Fenton oxidation processes for formaldehyde degradation.

Keywords
Formaldehyde
Lanthanum oxide
Zeolite Socony Mobil-5
Degradation
Funding
This study was supported by the National Natural Science Fund of China (grant no. 22072105).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Yang X, Zhao HQ, Qu ZB, et al. The effect of oxygen-containing functional groups on formaldehyde adsorption in solution on carbon surface: A density functional theory study. J Environ Chem Eng. 2021;9(5):105987. doi: 10.1016/j.jece.2021.105987

 

  1. Guimaraes JR, Farah CRT, Maniero MG, Fadini PS. Degradation of formaldehyde by advanced oxidation processes. J Environ Manage. 2012;107:96-101. doi: 10.1016/j.jenvman.2012.04.024

 

  1. Lebkowska M, Narozniak-Rutkowska A, Pajor E. Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea-formaldehyde resin production by activated sludge. Bioresour Technol. 2013;132:78-83. doi: 10.1016/j.biortech.2013.01.020

 

  1. Laciste MT, De Luna MDG, Tolosa NC, Lu MC. Effect of calcination time of a quadruple-element doped titania nanoparticles in the photodegradation of gaseous formaldehyde under blue light irradiation. Chemosphere. 2020;246:125763. doi: 10.1016/j.chemosphere.2019.125763

 

  1. Du L, Li PY, Gao WQ, Ding X, Jiao WZ, Liu YZ. Enhancement degradation of formaldehyde by MgO/γ- Al2O3 catalyzed O3/H2O2 in a rotating packed bed. J Taiwan Inst Chem E. 2021;118:29-37. doi: 10.1016/j.jtice.2021.01.011

 

  1. Ma QG, Huo PC, Wang KS, et al. Preparation of perovskite-type LaMnO3 and its catalytic degradation of formaldehyde in wastewater. Molecules. 2024;29(16):3822. doi: 10.3390/molecules29163822

 

  1. Ma QG, Shi SY, Yang FF, Zhang X. Removal of formaldehyde in water with low concentration of hydrogen peroxide catalyzed by lanthanumsilicon oxide composite. Desalin Water Treat. 2023;300:101-106. doi: 10.5004/dwt.2023.29734

 

  1. Ma QG, Hao Y, Xue YF, Niu YL, Chang XL. Removal of formaldehyde from aqueous solution by hydrogen peroxide. J Water Chem Techno. 2022;44(4):297-303. doi: 10.3103/S1063455X22040099

 

  1. Zhang XC, Cheng SL, Liao FT, Chen C, Long MC. Research progress on hydrogen peroxide photosynthesis from only water and oxygen over polymer photocatalysts. Rare Metals. 2024;43(12):6144-6163. doi: 10.1007/s12598-024-02752-3

 

  1. Bahammou O, Tazi I, El Mrabet I, et al. Treatment of real tannery industrial wastewater via sequential biological and US/UV/activated persulfate-hydrogen peroxide processes. Water Air Soil Pollut. 2025;236(5):282. doi: 10.1007/s11270-025-07904-4

 

  1. El Mrabet I, Benzina M, Valdes H, Zaitan H. Treatment of landfill leachates from Fez city (Morocco) using a sequence of aerobic and Fenton processes. Sci Afr. 2020;8:e00434. doi: 10.1016/j.sciaf.2020.e00434

 

  1. Chen JP, Peng YA, Wang ZK, Lv FG. Influence of Fentonlike reactions between hydrogen peroxide and ferric chloride on chemical mechanical polishing 304 stainless steel. Int J Adv Manuf Tech. 2024;131:2667-2675. doi: 10.1007/s00170-023-12117-2

 

  1. Sani S, Dashti AF, Adnan R. Applications of Fenton oxidation processes for decontamination of palm oil mill effluent: A review. Arab J Chem. 2020;13(10):7302-7323. doi: 10.1016/j.arabjc.2020.08.009

 

  1. Oluwole AO, Omotola EO, Olatunji OS. Pharmaceuticals and personal care products in water and wastewater: A review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC Chem. 2020;14(1):62. doi: 10.1186/s13065-020-00714-1

 

  1. Imohiosen FA, Ofudje EA, Al-Ahmary KM, et al. Pharmaceutical effluent degradation using hydrogen peroxide-supported zerovalent iron nanoparticles catalyst. Sci Rep. 2024;14(1):23957. doi: 10.1038/s41598-024-74627-7

 

  1. Prabagar JS, Yashas SR, Gurupadayya B, Wantala, K, Diganta D, Shivaraju HP. Degradation of doxycycline antibiotics using lanthanum copper oxide microspheres under simulated sunlight. Environ Sci Pollut R. 2022;29(38):57204-57214. doi: 10.1007/s11356-022-19842-3

 

  1. Iqbal T, Sohaib M. Synthesis of novel lanthanum-doped zinc oxide nanoparticles and their application for wastewater treatment. Appl Nanosci. 2021;11(10):2599-2609. doi: 10.1007/s13204-021-02104-y

 

  1. Teju MD, Majamo SL. Synthesis and application of lanthanum-doped magnetic biochar composite adsorbent for removal of fluoride from water. Environ Monit Assess. 2023;195(12):1469. doi: 10.1007/s10661-023-12075-y

 

  1. Kumari A, Kumar A, Thakur M, Pathania D, Rani A, Sharma A. Murraya koenigii plant-derived biochar (BC) and lanthanum ferrite (BC/LaFeO3) nano-hybrid structure for efficient ciprofloxacin adsorption from waste water. Chem Afr. 2023;6:3079-3095. doi: 10.1007/s42250-023-00698-0

 

  1. Chakraborty V, Das P, Roy PK. Lanthanum oxide-graphene oxide coated functionalized pyrolyzed biomass from sawdust and its application for dye removal present in solution. Biomass Convers Bior. 2023;13(7):5601-5610. doi: 10.1007/s13399-021-01507-9

 

  1. Heydari R, Akhlaghian F. Promotion of brass nanowires with lanthanum oxide and its application for photodegradation of tetracycline wastewater. Environ Sci Pollut R. 2021;28(8):9255-9266. doi: 10.1007/s11356-020-11450-3

 

  1. Saien J, Soleymani AR. Feasibility of using a slurry falling film photo-reactor for individual and hybridized AOPs. J Ind Eng Chem. 2012;18(5):1683-1688. doi: 10.1016/j.jiec.2012.03.014

 

  1. Mallikarjunaswamy C, Soundarya TL, Al-Kahtani AA, Al-Odayni AB, Nagaraju G, Ranganatha VL. Facile green synthesis of lanthanum oxide nanoparticles: Their photocatalytic and electrochemical applications. J Mater Sci Mater Electron. 2024;35(18):1203. doi: 10.1007/s10854-024-13024-2

 

  1. Wang WX, Zhang JB, Liang DX, et al. Anodic oxidation growth of lanthanum/manganese-doped TiO2 nanotube arrays for photocatalytic degradation of various organic dyes. J Mater Sci Mater El. 2020;31(11):8844-8851. doi: 10.1007/s10854-020-03419-2

 

  1. Liao J, Bao W, Chen Y, Zhang Y, Chang L. The adsorptive removal of thiophene from benzene over ZSM-5 Zeolite. Energ Source Part A. 2012;34(5-8):618-625. doi: 10.1080/15567036.2010.549916

 

  1. Ren XC, Wang ZK, Zhang GX. Mechanism of NO adsorption on H-ZSM-5 under aerobic atmosphere. J Wuhan Univ Technol-Mater Sci Ed. 2025;40(3):674-681. doi: 10.1007/s11595-025-3103-y

 

  1. Li N, Huang B, Dong X, et al. Bifunctional zeolites-silver catalyst enabled tandem oxidation of formaldehyde at low temperatures. Nat Commun. 2022;13(1):2209. doi: 10.1038/s41467-022-29936-8

 

  1. Tang XF, Li YG, Huang XM, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Appl Catal B Environ. 2006;62(3-4):265-273. doi: 10.1016/j.apcatb.2005.08.004

 

  1. Chen D, Qu ZP, Sun YH, Gao K, Wang Y. Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts. Appl Catal B Environ. 2013;142:838-848. doi: 10.1016/j.apcatb.2013.06.025

 

  1. Song XL, Fu YX, Pang YM, Gao LG. Preparation of La-Zn/HZSM-5 zeolite and its application in photocatalytic degradation of phenol. Chem Phys Lett. 2022;805:139947. doi: 10.1016/j.cplett.2022.139947

 

  1. Hellal MS, Rashad AM, Kadimpati KK, Attia SK, Fawzy ME. Adsorption characteristics of nickel (II) from aqueous solutions by zeolite scony mobile-5 (ZSM-5) incorporated in sodium alginate beads. Sci Rep. 2023;13(1):19601. doi: 10.1038/s41598-023-45901-x

 

  1. Ma YY, Hu J, Jia LH, Li ZF, Kan QB, Wu SJ. Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. Mater Res Bull. 2013;48:1881-1884. doi: 10.1016/j.materresbull.2013.01.014

 

  1. Li GX, Lei PJ, Chen G, et al. The effect of precursor temperature on the surface and interface structure of Ni/ZSM-5 hydrogenation catalyst. Catal Lett. 2025;155(5):163. doi: 10.1007/s10562-025-05004-w

 

  1. Zheng MD, Chen Y, Liu Z, et al. Hierarchically macroporous zeolite ZSM-5 microspheres for efficient catalysis. Chem Res Chinese U. 2024;40(4): 704-711. doi: 10.1007/s40242-024-4041-5

 

  1. Qi YC, Peng H. One-pot synthesis of La2O3- decorated Mg-Al oxides nanosheets for solar-light driven photocatalytic activity. Colloid Surface A. 2020;604:125316. doi: 10.1016/j.colsurfa.2020.125316

 

  1. Piskula ZS, Stodolny M, Gabala E, Kirszensztejn P, Nowicki W. Application of SiO2-La2O3 amorphous mesoporous nanocomposites obtained by modified solegel method in high temperature catalytic reactions. J Alloy Compd. 2020;840:155635. doi: 10.1016/j.jallcom.2020.155635

 

  1. Fida H, Zhang G, Guo S, Naeem A. Heterogeneous fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. J Colloid Interf Sci. 2017;490:859-868. doi: 10.1016/j.jcis.2016.11.085

 

  1. Moothedan M, Sherly KB. Synthesis and characterization of nanomesoporous lanthanum aluminate (LaAlO3) for catalytic wet air oxidation of phenol. Emergent Mater. 2020;3:267-277. doi: 10.1007/s42247-020-00097-y

 

  1. Flyunt R, Leitzke A, Mark G, et al. Determination of •OH, O2-•, and hydroperoxide yields in ozone reactions in aqueous solution. J Phys Chem B. 2003;107(30):7242-7253. doi: 10.1021/jp022455b

 

  1. Mandal M, Chakraborty D. Kinetic investigation on the highly efficient and selective oxidation of sulfides to sulfoxides and sulfones with t-BuOOH catalyzed by La2O3. RSC Adv. 2015;5(16):12111. doi: 10.1039/c4ra14391d

 

  1. Mohammadifard Z, Saboori R, Mirbagheri NS, Sabbaghi S. Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation. Environ Pollut. 2019;251:783-791. doi: 10.1016/j.envpol.2019.04.143
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing