Long-term wind energy potential analysis in Vietnam’s central highlands using the innovative trend analysis method
Understanding long-term trends in local wind resources is a critical prerequisite for sustainable energy planning. This study provides a detailed investigation of historical wind-speed trends in Vietnam’s Central Highlands, a region with significant untapped wind power potential. We employed the advanced innovative trend analysis (ITA) method to analyze a 30-year (1985–2014) daily wind-speed dataset from four key meteorological stations, which was rigorously checked for homogeneity. While the observational period concluded in 2014, we established a critical historical baseline and a robust methodological framework. Unlike conventional monotonic tests, the graphical ITA method detected and visualized hidden, non-linear trends across different data sub-series. The analysis revealed highly heterogeneous and localized trend patterns. A statistically significant decreasing trend was identified at Bao Loc station during the wet season (p<0.05). In contrast, stations like Ayun Pa exhibited opposing trends between seasons, indicating an intensification of wind seasonality. This study demonstrates that a granular, site-specific, and methodologically advanced understanding of wind resource dynamics is essential, revealing nuances completely overlooked by traditional methods and providing crucial insights for climate-resilient energy planning.

- Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019;24:38-50. doi: 10.1016/j.esr.2019.01.006
- International Renewable Energy Agency. Global Energy Transformation: A Roadmap to 2050. United Arab Emirates: IRENA; 2019.
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2021.
- Saidur R, Islam MR, Rahim NA, Solangi KH. A review on global wind energy policy. Renew Sust Energ Rev. 2011;15(4):225-235. doi: 10.1016/j.rser.2010.12.009
- GWEC. Global Wind Report 2023. Global Wind Energy Council; 2023.
- Pryor SC, Barthelmie RJ, Bukovsky MS, et al. Climate change impacts on wind energy: A review. Renew Sust Energ Rev. 2020;121:109693. doi: 10.1016/j.rser.2019.109693
- Emeis S. Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation. Berlin: Springer; 2018.
- Staffell I, Pfenninger S. The increasing variability of potential wind power generation. Energy. 2018;145:814-826. doi: 10.1016/j.energy.2017.12.050
- Torralba V, Doblas-Reyes FJ, Gonzalez-Reviriego N, et al. The unpredictable nature of near-surface wind speeds over Europe. Nat Clim Change. 2017;7(8):565-569. doi: 10.1038/nclimate3336
- Zeng Z, Ziegler AD, Searchinger T, et al. A reversal in global terrestrial stilling and its implications for vegetation and wildfire. Nat Clim Change. 2019;9(12):979-985. doi: 10.1038/s41558-019-0622-6
- McVicar TR, Roderick ML, Donohue RJ, et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J Hydrol. 2012;416-417:182-205. doi: 10.1016/j.jhydrol.2011.10.024
- Dunn RJH, Azorin-Molina C, Mears CA, et al. The long-term satellite-derived surface radiative budget using ISCCP-FH and its extension to CERES. J Geophys Res Atmos. 2016;121:4138-4162. doi: 10.1002/2015JD024519
- Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci. 2010;3(11):756-761. doi: 10.1038/ngeo979
- Zhang K, Wang D. A comprehensive analysis of near-surface wind speed trends over China from 1961 to 2017. Int J Climatol. 2021;41(2):1189-1205. doi: 10.1002/joc.6723
- Fant C, Schlosser CA, Strzepek K. The impact of climate change on wind and solar resources in southern Africa. Appl Energy. 2016;161:556-564. doi: 10.1016/j.apenergy.2015.10.092
- Mann HB. Nonparametric tests against trend. Econometrica. 1945;13(3):245-259. doi: 10.2307/1907187
- Kendall MG. Rank Correlation Methods. London: Charles Griffin; 1975.
- Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Change. 2013;100:172-182. doi: 10.1016/j.gloplacha.2012.10.014
- Asfaw A, Simane B, Hassen A, Bantider A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim Extremes. 2018;19:29-41. doi: 10.1016/j.wace.2017.12.002
- Önöz B, Bayazit M. Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrol Process. 2012;26(23):3552-3560. doi: 10.1002/hyp.8438
- Caloiero T, Coscarelli R, Ferrari E. Application of the innovative trend analysis method for the trend assessment of rainfall in southern Italy. Water. 2021;13(15):2119. doi: 10.3390/w13152119
- El-Far EA, El-Diasty M. Innovative trend analysis of wind speed in Egypt. Renew Energ Focus. 2023;44:345-357. doi: 10.1016/j.ref.2022.12.008
- Sen Z. Innovative trend analysis methodology. J Hydrol Eng. 2012;17(9):1042-1046. doi: 10.1061/(asce)he.1943-5584.0000556
- Sen Z. Trend identification simulation and application. J Hydrol Eng. 2014;19(3):635-642. doi: 10.1061/(asce)he.1943-5584.0000811
- Wu H, Zuo J. A systematic review of innovative trend analysis method: Methodology, applications, and future directions. Water Resour Manag. 2021;35:1903-1921. doi: 10.1007/s11269-021-02831-w
- Akgül M, Şen Z, Yeleğen MO. Innovative trend analyses of water quality parameters in a megacity of Istanbul, Turkey. Environ Monit Assess. 2022;194(3):195. doi: 10.1007/s10661-022-09855-y
- de Lucena AJ, de Vasconcelos PC, de Lima FJL, et al. Wind speed trends for the northeast coast of Brazil. Renew Energy. 2021;164:1144-1157. doi: 10.1016/j.renene.2020.09.112
- Alashan S. Application of innovative trend analysis method on precipitation and temperature variables over Saudi Arabia. Arab J Geosci. 2020;13(21):1146.doi: 10.1007/s12517-020-06132-0
- Meshram SG, Singh VP, Meshram C. Long-term trend and variability of precipitation in the semi-arid region of India using innovative trend analysis. Hydrol Sci J. 2020;65(6):990-1002. doi: 10.1080/02626667.2020.1718873
- Tfi B, Ghrab S. Analysis of precipitation and temperature trends using innovative trend analysis method in northern Tunisia. Model Earth Syst Environ. 2023;9(1): 819-835. doi: 10.1007/s40808-022-01584-6
- Ninh NQ, Binh DV, Nam NH, et al. Renewable energy in Tay Nguyen: Potential and challenges. J Sci Technol. 2020;11:1-10. [In Vietnamese]
- World Bank. Vietnam’s Solar and Wind Power Potential: A Roadmap to 2030. United States: World Bank; 2020.
- Hahmann AN, Sīle T, Witha B, et al. The new european wind atlas. J Phys Conf Ser. 2020;1452:012002. doi: 10.1088/1742-6596/1452/1/012087
- Sen Z. Innovative trend significance test and applications. Theor Appl Climatol. 2017;127(3-4):939-947. doi: 10.1007/s00704-015-1681-x
