AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025370289
ORIGINAL RESEARCH ARTICLE

Long-term wind energy potential analysis in Vietnam’s central highlands using the innovative trend analysis method

Do Quang Linh1,2† Tran Duc Dung2,3† Dang Truong An2,4*
Show Less
1 Department of Environmental Management and Informatics, Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam
2 Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
3 Institute for Environment and Resources, Ho Chi Minh City, Vietnam
4 Department of Oceanology, Meteorology and Hydrology, Faculty of Physis-Physis Engineering, University of Science, Ho Chi Minh City, Vietnam
†These authors contributed equally to this work.
Received: 10 September 2025 | Revised: 23 October 2025 | Accepted: 30 October 2025 | Published online: 18 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Understanding long-term trends in local wind resources is a critical prerequisite for sustainable energy planning. This study provides a detailed investigation of historical wind-speed trends in Vietnam’s Central Highlands, a region with significant untapped wind power potential. We employed the advanced innovative trend analysis (ITA) method to analyze a 30-year (1985–2014) daily wind-speed dataset from four key meteorological stations, which was rigorously checked for homogeneity. While the observational period concluded in 2014, we established a critical historical baseline and a robust methodological framework. Unlike conventional monotonic tests, the graphical ITA method detected and visualized hidden, non-linear trends across different data sub-series. The analysis revealed highly heterogeneous and localized trend patterns. A statistically significant decreasing trend was identified at Bao Loc station during the wet season (p<0.05). In contrast, stations like Ayun Pa exhibited opposing trends between seasons, indicating an intensification of wind seasonality. This study demonstrates that a granular, site-specific, and methodologically advanced understanding of wind resource dynamics is essential, revealing nuances completely overlooked by traditional methods and providing crucial insights for climate-resilient energy planning.

Graphical abstract
Keywords
Climate change
Innovative trend analysis
Renewable energy
Trend analysis
Wind speed
Central highlands
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019;24:38-50. doi: 10.1016/j.esr.2019.01.006

 

  1. International Renewable Energy Agency. Global Energy Transformation: A Roadmap to 2050. United Arab Emirates: IRENA; 2019.

 

  1. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2021.

 

  1. Saidur R, Islam MR, Rahim NA, Solangi KH. A review on global wind energy policy. Renew Sust Energ Rev. 2011;15(4):225-235. doi: 10.1016/j.rser.2010.12.009

 

  1. GWEC. Global Wind Report 2023. Global Wind Energy Council; 2023.

 

  1. Pryor SC, Barthelmie RJ, Bukovsky MS, et al. Climate change impacts on wind energy: A review. Renew Sust Energ Rev. 2020;121:109693. doi: 10.1016/j.rser.2019.109693

 

  1. Emeis S. Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation. Berlin: Springer; 2018.

 

  1. Staffell I, Pfenninger S. The increasing variability of potential wind power generation. Energy. 2018;145:814-826. doi: 10.1016/j.energy.2017.12.050

 

  1. Torralba V, Doblas-Reyes FJ, Gonzalez-Reviriego N, et al. The unpredictable nature of near-surface wind speeds over Europe. Nat Clim Change. 2017;7(8):565-569. doi: 10.1038/nclimate3336

 

  1. Zeng Z, Ziegler AD, Searchinger T, et al. A reversal in global terrestrial stilling and its implications for vegetation and wildfire. Nat Clim Change. 2019;9(12):979-985. doi: 10.1038/s41558-019-0622-6

 

  1. McVicar TR, Roderick ML, Donohue RJ, et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J Hydrol. 2012;416-417:182-205. doi: 10.1016/j.jhydrol.2011.10.024

 

  1. Dunn RJH, Azorin-Molina C, Mears CA, et al. The long-term satellite-derived surface radiative budget using ISCCP-FH and its extension to CERES. J Geophys Res Atmos. 2016;121:4138-4162. doi: 10.1002/2015JD024519

 

  1. Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci. 2010;3(11):756-761. doi: 10.1038/ngeo979

 

  1. Zhang K, Wang D. A comprehensive analysis of near-surface wind speed trends over China from 1961 to 2017. Int J Climatol. 2021;41(2):1189-1205. doi: 10.1002/joc.6723

 

  1. Fant C, Schlosser CA, Strzepek K. The impact of climate change on wind and solar resources in southern Africa. Appl Energy. 2016;161:556-564. doi: 10.1016/j.apenergy.2015.10.092

 

  1. Mann HB. Nonparametric tests against trend. Econometrica. 1945;13(3):245-259. doi: 10.2307/1907187

 

  1. Kendall MG. Rank Correlation Methods. London: Charles Griffin; 1975.

 

  1. Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Change. 2013;100:172-182. doi: 10.1016/j.gloplacha.2012.10.014

 

  1. Asfaw A, Simane B, Hassen A, Bantider A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim Extremes. 2018;19:29-41. doi: 10.1016/j.wace.2017.12.002

 

  1. Önöz B, Bayazit M. Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrol Process. 2012;26(23):3552-3560. doi: 10.1002/hyp.8438

 

  1. Caloiero T, Coscarelli R, Ferrari E. Application of the innovative trend analysis method for the trend assessment of rainfall in southern Italy. Water. 2021;13(15):2119. doi: 10.3390/w13152119

 

  1. El-Far EA, El-Diasty M. Innovative trend analysis of wind speed in Egypt. Renew Energ Focus. 2023;44:345-357. doi: 10.1016/j.ref.2022.12.008

 

  1. Sen Z. Innovative trend analysis methodology. J Hydrol Eng. 2012;17(9):1042-1046. doi: 10.1061/(asce)he.1943-5584.0000556

 

  1. Sen Z. Trend identification simulation and application. J Hydrol Eng. 2014;19(3):635-642. doi: 10.1061/(asce)he.1943-5584.0000811

 

  1. Wu H, Zuo J. A systematic review of innovative trend analysis method: Methodology, applications, and future directions. Water Resour Manag. 2021;35:1903-1921. doi: 10.1007/s11269-021-02831-w

 

  1. Akgül M, Şen Z, Yeleğen MO. Innovative trend analyses of water quality parameters in a megacity of Istanbul, Turkey. Environ Monit Assess. 2022;194(3):195. doi: 10.1007/s10661-022-09855-y

 

  1. de Lucena AJ, de Vasconcelos PC, de Lima FJL, et al. Wind speed trends for the northeast coast of Brazil. Renew Energy. 2021;164:1144-1157. doi: 10.1016/j.renene.2020.09.112

 

  1. Alashan S. Application of innovative trend analysis method on precipitation and temperature variables over Saudi Arabia. Arab J Geosci. 2020;13(21):1146.doi: 10.1007/s12517-020-06132-0

 

  1. Meshram SG, Singh VP, Meshram C. Long-term trend and variability of precipitation in the semi-arid region of India using innovative trend analysis. Hydrol Sci J. 2020;65(6):990-1002. doi: 10.1080/02626667.2020.1718873

 

  1. Tfi B, Ghrab S. Analysis of precipitation and temperature trends using innovative trend analysis method in northern Tunisia. Model Earth Syst Environ. 2023;9(1): 819-835. doi: 10.1007/s40808-022-01584-6

 

  1. Ninh NQ, Binh DV, Nam NH, et al. Renewable energy in Tay Nguyen: Potential and challenges. J Sci Technol. 2020;11:1-10. [In Vietnamese]

 

  1. World Bank. Vietnam’s Solar and Wind Power Potential: A Roadmap to 2030. United States: World Bank; 2020.

 

  1. Hahmann AN, Sīle T, Witha B, et al. The new european wind atlas. J Phys Conf Ser. 2020;1452:012002. doi: 10.1088/1742-6596/1452/1/012087

 

  1. Sen Z. Innovative trend significance test and applications. Theor Appl Climatol. 2017;127(3-4):939-947. doi: 10.1007/s00704-015-1681-x
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing