AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025260210
ORIGINAL RESEARCH ARTICLE

Assessment of the surface urban heat island in Ho Chi Minh City using remote sensing and geographic information systems

Lam Van Hao1,2*
Show Less
1 Department of Oceanology, Meteorology and Hydrology, Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh, Vietnam
2 Viet Nam National University-Ho Chi Minh City, Ho Chi Minh, Vietnam
Received: 26 June 2025 | Revised: 10 July 2025 | Accepted: 15 July 2025 | Published online: 3 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The rapid urbanization of Ho Chi Minh City (HCMC) has led to an increasingly intense urban heat island (UHI) phenomenon, significantly impacting its environment and inhabitants. This study investigates the spatiotemporal dynamics of the surface UHI (SUHI) in HCMC by utilizing a 36-year time series of Landsat satellite imagery (1988, 1995, 2002, 2010, 2017, and 2024), processed within a geographic information system framework. Land surface temperature (LST) was derived to map and quantify UHI patterns. The results reveal a substantial and progressive intensification of the SUHI effect, with the citywide mean LST increasing from 25.4°C in 1988 to 28.7°C in 2024. Spatially, the SUHI has expanded from the urban core into peripheral suburban zones, particularly toward the east and northwest. A strong and consistent negative correlation (R2 > 0.7) was observed between LST and the normalized difference vegetation index, underscoring the critical role of green spaces in mitigating urban heat. These findings provide crucial, data-driven insights for urban planners and policymakers, highlighting the urgent need for sustainable development strategies—such as enhancing green infrastructure and adopting cool materials—to combat the adverse effects of urban warming in this rapidly expanding tropical metropolis.

Keywords
Geographic information system
Land surface temperature
Landsat
Remote sensing
Urban heat island
Funding
This research was funded by the University of Science, Viet Nam National University-HCMC, under grant number T2024-21.
Conflict of interest
The author declares no competing interests.
References
  1. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision. New York: United Nations; 2019.

 

  1. Voogt JA, Oke TR. Thermal remote sensing of Urban climates. Remote Sens Environ. 2003;86(3):370-384. doi: 10.1016/S0034-4257(03)00079-8

 

  1. Zhou W, Huang G, Cadenasso ML. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in Urban landscapes. Landsc Urban Plann. 2011;102(1):54-63. doi: 10.1016/j.landurbplan.2011.03.009

 

  1. Arnfield AJ. Two decades of Urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol. 2003;23(1):1-26. doi: 10.1002/joc.859

 

  1. Akbari H, Pomerantz M, Taha H. Cool surfaces and shade trees to reduce energy use and improve air quality in Urban areas. Sol Energy. 2001;70(3):295-310. doi: 10.1016/S0038-092X(00)00089-X

 

  1. Santamouris M. Cooling the cities-a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol Energy. 2014;103:682-703. doi: 10.1016/j.solener.2012.07.003

 

  1. Stewart ID, Oke TR. Local climate zones for Urban temperature studies. Bull Am Meteorol Soc. 2012;93(12):1879-1900. doi: 10.1175/BAMS-D-11-00019.1

 

  1. Oke TR. City size and the Urban heat Island. Atmos Environ. 1973;7(8):769-779. doi: 10.1016/0004-6981(73)90140-6

 

  1. Sobrino JA, Jiménez-Muñoz JC, Paolini L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ. 2004;90:434-440. doi: 10.1016/j.rse.2004.02.003

 

  1. Weng Q. Thermal infrared remote sensing for Urban climate and environmental studies: Methods, applications, and trends. ISPRS J Photogramm Remote Sens. 2009;64(4):335-344. doi: 10.1016/j.isprsjprs.2009.03.007

 

  1. Chakraborty T, Lee X. A simplified Urban-extent algorithm to characterize surface Urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int J Appl Earth Obs Geoinf. 2019;74:269-280. doi: 10.1016/j.jag.2018.09.015

 

  1. Zhou D, Xiao J, Bonafoni S, et al. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019;11(1):48. doi: 10.3390/rs11010048

 

  1. Carlson TN, Ripley DA. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ. 1997;62(3):241-252. doi: 10.1016/S0034-4257(97)00104-1

 

  1. Keeratikasikorn C, Bonafoni S. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sens. 2018;10(3):440. doi: 10.3390/rs10030440

 

  1. Mallick J, Rahman A, Singh CK. Modelling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv Space Res. 2013;52(4):639-655. doi: 10.1016/j.asr.2013.04.025

 

  1. Wang W, Liu K, Tang R, Wang S. Remote sensing image-based analysis of the Urban heat island effect in Shenzhen, China. Phys Chem Earth A B C. 2019;110:168-175. doi: 10.1016/j.pce.2019.01.002

 

  1. Katzschner A, Schwartze F, Thanh B, Schmid M. Introduction to Ho Chi Minh City. In: Katzschner A, Waibel M, Schwede D, Katzschner L, Schmid M, Storch H, editors. Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities. Berlin: Springer International Publishing; 2016. p. 5-17.

 

  1. General Statistics Office. Statistical Yearbook of Viet Nam 2022. Wiley: Statistical Publishing House; 2022.

 

  1. Anh NH, Trang NTD, Nguyen NTT, Trong TV, Son TV. Application of remote sensing of Ho Chi Minh city’s surface temperature in period 2016-2020. J Hydro Meteorol. 2021;729:29-39. doi: 10.36335/VNJHM.2021(729).41-51

 

  1. Li X, Zhou Y, Asrar GR, Imhoff M, Li X. The surface urban heat island response to Urban expansion: A panel analysis for the conterminous United States. Sci Total Environ. 2017;605-606:426-435. doi: 10.1016/j.scitotenv.2017.06.229

 

  1. U.S. Geological Survey. EarthExplorer. Available from: https://earthexplorer.usgs.gov [Last accessed on 2024 Jun 05].

 

  1. Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ. 2009;113(5):893-903. doi: 10.1016/j.rse.2009.01.007

 

  1. Ihlen V. Landsat 8 Data Users Handbook. USA: Department of the Interior U.S. Geological Survey; 2019.

 

  1. Fallmann J, Forkel R, Emeis S. Secondary effects of Urban heat island mitigation measures on air quality. Atmos Environ. 2016;125:199-211. doi: 10.1016/j.atmosenv.2015.10.094

 

  1. Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symposium. Vol. 1. United States: NASA; 1974. p. 309-317.

 

  1. Naim MNH, Kafy AA. Assessment of Urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environ Challen. 2021;4:100107. doi: 10.1016/j.envc.2021.100107

 

  1. García DH, Díaz JA. Modeling the surface Urban heat island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sustain Cities Soc. 2022;87:104166. doi: 10.1016/j.scs.2022.104166

 

  1. Zhang Y, Yu T, Gu XF, et al. Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of Urban heat island effect. J Remote Sens. 2006; 10(5):789-797. doi: 10.11834/jrs.200605117

 

  1. Peng S, Piao S, Ciais P, et al. Surface Urban heat island across 419 global big cities. Environ Sci Technol. 2012;46(2):696-703. doi: 10.1021/es2030438

 

  1. Takebayashi H, Moriyama M. Surface heat budget on green roof and high reflection roof for mitigation of Urban heat island. Build Environ. 2007;42(8):2971-2979. doi: 10.1016/j.buildenv.2006.06.017

 

  1. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc Urban Plann. 2010;97(3):147-155. doi: 10.1016/j.landurbplan.2010.05.006

 

  1. Santamouris M. Regulating the damaged thermostat of the cities: The increasing story of the Urban heat island. Energy Build. 2015;91(2):1-4. doi: 10.1016/j.enbuild.2015.01.027

 

  1. Tan J, Zheng Y, Tang X, et al. The Urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol. 2010;54(1):75-84. doi: 10.1007/s00484-009-0256-x

 

  1. Akbari H, Kolokotsa D. Three decades of Urban heat islands and mitigation technologies research. Energy Build. 2016;133:834-842. doi: 10.1016/j.enbuild.2016.09.067
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing