AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025290224
REVIEW ARTICLE

Hydrocarbons in seawater: Sources, fate, impacts, and remediation strategies

Daniele Fattorini1,2*
Show Less
1 Department of Life and Environmental Sciences, Faculty of Sciences, Polytechnic University of Marche, Ancona, Marche, Italy
2 National Inter-University Consortium for Marine Sciences, Ancona, Marche, Italy
Received: 15 July 2025 | Revised: 1 August 2025 | Accepted: 18 August 2025 | Published online: 8 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hydrocarbon contamination in marine environments poses a significant global environmental challenge, impacting ecosystems, human health, and economic activities. The present review provides a comprehensive overview of hydrocarbons in seawater, addressing their diverse sources, complex fate and transport mechanisms, ecological and toxicological impacts, and various remediation strategies. Both natural seepages from geological formations and a wide array of anthropogenic inputs are discussed as primary contributors to marine hydrocarbon burdens. Anthropogenic carbon inputs include large-scale accidental oil spills, chronic operational discharges from shipping and offshore platforms, industrial effluents, and diffuse urban runoff carrying petrogenic and pyrogenic hydrocarbons, during the past 50 years. In the sea, hydrocarbons undergo a series of interconnected physical, chemical, and biological transformations that mediate their persistence, bioavailability, and spatial distribution. The specific environmental conditions, such as temperature, nutrient availability, and microbial community composition, significantly influence the rate and extent of these natural attenuation processes. The ecological consequences range from acute lethal impacts causing immediate mortality in marine organisms to chronic sublethal effects on reproduction, growth, immune response, and behavior across a wide range of taxa, from plankton to marine mammals. Furthermore, long-term ecosystem disruptions, including habitat degradation of vital coastal areas, such as mangroves and coral reefs, and bioaccumulation within the food web, pose serious threats to ecosystem health and biodiversity. To mitigate these adverse effects, a range of remediation strategies has been developed and implemented; their mechanisms, effectiveness in various scenarios, inherent limitations, and potential secondary environmental considerations are explored in this review. Emphasis is placed on the importance of integrated approaches that combine rigorous prevention measures, rapid and effective response protocols during spill events, and sustainable, environmentally sound long-term remediation techniques. Understanding the intricate interplay between the sources, transformations, impacts, and potential solutions for hydrocarbon contamination is crucial for developing robust management plans and safeguarding the long-term health and resilience of marine ecosystems.

Keywords
Hydrocarbons
Marine environment
Natural source
Anthropogenic pollution
Monitoring programs
Remediation strategy
Funding
None.
Conflict of interest
Daniele Fattorini is an Editorial Board Member of this journal but was not involved in any way in the editorial and peer-review process conducted for this paper, either directly or indirectly. He declares no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Haseeba KP, Vethamony P, Veerasingam S, Aboobacker VM, Al-Khayat JA. A comprehensive review of oil residues in the world oceans: Types, characteristics, sources and distribution. Mar Pollut Bull. 2025;217:118106. doi: 10.1016/j.marpolbul.2025.118106

 

  1. Volkman JK, Holdsworth DG, Neill GP, Bavor HJ Jr. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Environ. 1992;112(2-3):203-219. doi: 10.1016/0048-9697(92)90188-x

 

  1. Carvalho ACB, Moreira VA, Vicente MC, Bernardes MC, Bidone ED, Sabadini-Santos E. Evolution of the sources contribution of aliphatic hydrocarbons and their fate in Sepetiba bay, rio de janeiro, Brazil. Estuar Coast Shelf Sci. 2021;261:107548. doi: 10.1016/j.ecss.2021.107548

 

  1. Greenshields JB, Rossini FD. Molecular structure and properties of hydrocarbons and related compounds. J Phys Chem. 1958;62(3):271-280. doi: 10.1021/j150561a005

 

  1. Chakraborty A, Ruff SE, Dong X, et al. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proc Natl Acad Sci USA. 2020;117(20):11029-11037. doi: 10.1073/pnas.2002289117

 

  1. Joye SB. The geology and biogeochemistry of hydrocarbon seeps. Ann Rev Earth Planet Sci. 2020;48:205-231. doi: 10.1146/annurev-earth-063016-020052

 

  1. Brooks JM, Kennicutt MC 2nd, Fisher CR, et al. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science. 1987;238:1138-1142. doi: 10.1126/science.238.4830.1138

 

  1. Rogowska J, Namieśnik J. Environmental implications of oil spills from shipping accidents. Rev Environ Contam Toxicol. 2010;206:95-114. doi: 10.1007/978-1-4419-6260-7_5

 

  1. Helle I, Mäkinen J, Nevalainen M, Afenyo M, Vanhatalo J. Impacts of oil spills on arctic marine ecosystems: A quantitative and probabilistic risk assessment perspective. Environ Sci Technol. 2020;54(4):2112-2121. doi: 10.1021/acs.est.9b07086

 

  1. Cordero JD, Saqalli M, Laplanche C, Locquet M, Elger A. Spatial analysis of accidental oil spills using heterogeneous data: A case study from the North-Eastern ecuadorian amazon. Sustainbility. 2018;10(12):4719. doi: 10.3390/su10124719

 

  1. Moore SF, Dwyer RL. Effects of oil on marine organisms: A critical assessment of published data. Water Res. 1974;8(10):819-827. doi: 10.1016/0043-1354(74)90028-1

 

  1. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361-422. doi: 10.1128/MMBR.00039-10

 

  1. Abrams MA. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar Petrol Geol. 2005;22(4):457-477. doi: 10.1016/j.marpetgeo.2004.08.003

 

  1. Wang S, Liu G, Yuan Z, Lam PKS. Occurrence and trophic transfer of aliphatic hydrocarbons in fish species from yellow river estuary and Laizhou Bay, China. Sci Total Environ. 2019;696:134037. doi: 10.1016/j.scitotenv.2019.134037

 

  1. Han M, Li H, Kang Y, et al. Bioaccumulation and trophic transfer of PAHs in tropical marine food webs from coral reef ecosystems, the South China Sea: Compositional pattern, driving factors, ecological aspects, and risk assessment. Chemosphere. 2022;308:136295. doi: 10.1016/j.chemosphere.2022.136295

 

  1. Dastjerdi AM, Ashoorian S. Chemical Enhanced Oil Recovery in Unconventional Reservoirs. Netherlands: Elsevier; 2021. p. 433-459. doi: 10.1016/b978-0-12-821931-7.00004-3

 

  1. Wang X, Wang F, Taleb MAM, Wen Z, Chen X. A review of the seepage mechanisms of heavy oil emulsions during chemical flooding. Energies. 2022;15(22):8397. doi: 10.3390/en15228397

 

  1. Pérez MIA, Zapata-Ramírez PA, Micallef A. A review of cold seeps in the Western Atlantic, focusing on Colombia and the Caribbean. Front Mar Sci. 2024;11:1430377. doi: 10.3389/fmars.2024.1430377

 

  1. Umoh UU, Li L, He J, et al. Unusual aliphatic hydrocarbon profiles at hydrothermal vent fields of the Central and Southeast Indian Ridges and Mid-Indian Basin. Deep Sea Res Top Stud Oceanogr. 2021;194:104996. doi: 10.1016/j.dsr2.2021.104996

 

  1. Campbell KA. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol. 2005;232(2-4):362-407. doi: 10.1016/j.palaeo.2005.06.018

 

  1. Di Carlo M, Giovannelli D, Fattorini D, Bris NL, Vetriani C, Regoli F. Trace elements and arsenic speciation in tissues of tube dwelling polychaetes from hydrothermal vent ecosystems (east pacific rise): An ecological role as antipredatory strategy? Mar Environ Res. 2017;132:1-13. doi: 10.1016/j.marenvres.2017.10.003

 

  1. Giovannelli D, D’Errico G, Fiorentino F, et al. Diversity and distribution of prokaryotes within a shallow-water pockmark field. Front Microbiol. 2016;7:941. doi: 10.3389/fmicb.2016.00941

 

  1. Nickel JC, Di Primio R, Kallmeyer J, et al. Tracing the origin of thermogenic hydrocarbon signals in pockmarks from the southwestern Barents Sea. Org Geochem. 2013;63:73-84. doi: 10.1016/j.orggeochem.2013.08.008

 

  1. Lea-Smith DJ, Biller SJ, Davey MP, et al. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA. 2015;112(44):13591-13596. doi: 10.1073/pnas.1507274112

 

  1. Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. Mar Pollut Bullet. 2022;176:113464. doi: 10.1016/j.marpolbul.2022.113464

 

  1. Gill DA, Ritchie LA, Picou JS. Sociocultural and psychosocial impacts of the exxon valdez oil spill: Twenty-four years of research in Cordova, Alaska. Extr Ind Soc. 2016;3(4):1105-1116. doi: 10.1016/j.exis.2016.09.004

 

  1. Pérez-Cadahía B, Lafuente A, Cabaleiro T, Pásaro E, Méndez J, Laffon B. Initial study on the effects of prestige oil on human health. Environ Int. 2006;33(2):176-185. doi: 10.1016/j.envint.2006.09.006

 

  1. Kujawinski EB, Reddy CM, Rodgers RP, Thrash JC, Valentine DL, White HK. The first decade of scientific insights from the deepwater horizon oil release. Nature Rev Earth Environ. 2020;1(5):237-250. doi: 10.1038/s43017-020-0046-x

 

  1. Byrnes TA, Dunn RJK. Boating- and shipping-related environmental impacts and example management measures: A review. J Mar Sci Eng. 2020;8(11):908. doi: 10.3390/jmse8110908

 

  1. Nath F, Chowdhury MOS, Rhaman MM. Navigating produced water sustainability in the oil and gas sector: A critical review of reuse challenges, treatment technologies, and prospects ahead. Water. 2023;15(23):4088. doi: 10.3390/w15234088

 

  1. Güney CB. Ballast water problem: Current status and expected challenges. Mar Sci Tech Bull. 2022;11(4):397-415. doi: 10.33714/masteb.1162688

 

  1. Majeed BK, Shwan DMS, Rashid KA. A review on environmental contamination of petroleum hydrocarbons, its effects and remediation approaches. Environ Sci Process Impacts. 2025;27:526-548. doi: 10.1039/d4em00548a

 

  1. Ehis-Eriakha CB, Ajuzieogu CA, Orogu JO, Akemu SE. Overview of petroleum hydrocarbon pollution and bioremediation technologies. Bioremediat J. 2024:1-23. doi: 10.1080/10889868.2024.2349014

 

  1. Ivanov AY, Gerivani H, Evtushenko NV. Characterization of natural hydrocarbon seepage in the South Caspian Sea off Iran using satellite SAR and geological data. Mar Georesour Geotech. 2019;38(5):527-538. doi: 10.1080/1064119x.2019.1600175

 

  1. Li Y, Wang H, Cai Z, Zhang J, Fu J. Molecular analyses of petroleum hydrocarbon change and transformation during petroleum weathering by multiple techniques. ACS Omega. 2021;6(36):23222-23232. doi: 10.1021/acsomega.1c02846

 

  1. Dutta TK, Harayama S. Fate of crude oil by the combination of photooxidation and biodegradation. Environ Sci Technol. 2000;34(8):1500-1505. doi: 10.1021/es991063o

 

  1. Bacos AHP, Ancla SMB, Arcadio CGLA, et al. From surface water to the Deep Sea: A review on factors affecting the biodegradation of spilled oil in marine environment. J Mar Sci Eng. 2022;10(3):426. doi: 10.3390/jmse10030426

 

  1. Nicodem DE, Guedes CLB, Conceição M, et al. Photochemistry of petroleum. Prog React Kinet Mec. 2001;26(2-3):219-238. doi: 10.3184/007967401103165262

 

  1. Nicodem DE, Guedes CLB, Correa RJ, Fernandes MCZ. Photochemical processes and the environmental impact of petroleum spills. Biogeochem. 1997;39:121-138. doi: 10.1023/A:1005802027380

 

  1. Cao X, Tarr MA. Aldehyde and ketone photoproducts from solar-irradiated crude oil-seawater systems determined by electrospray ionization-tandem mass spectrometry. Environ Sci Technol. 2017;51(20):11858-11866. doi: 10.1021/acs.est.7b01991

 

  1. Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol Res Int. 2011;2011:941810. doi: 10.4061/2011/941810

 

  1. Perala-Dewey J, Orr K, Hageman KJ, Zawar-Reza P, Shahpoury P. Atmospheric transport of polycyclic aromatic hydrocarbons into three alpine valleys: Influence of local-scale wind patterns and chemical partitioning. Environ Sci Technol. 2023;57(35):13114-13123. doi: 10.1021/acs.est.3c03288

 

  1. Hook SE, Strzelecki J, Adams MS, et al. The influence of oil-in-water preparations on the toxicity of crude oil to marine invertebrates and fish following short-term pulse and continuous exposures. Environ Toxicol Chem. 2022;41(10):2580-2594. doi: 10.1002/etc.5437

 

  1. Boulais M, Vignier J, Loh AN, et al. Sublethal effects of oil-contaminated sediment to early life stages of the eastern oyster, Crassostrea virginica. Environ Pollut. 2018;243:743-751. doi: 10.1016/j.envpol.2018.09.017

 

  1. Fernandes GM, Martins DA, Santos RPD, et al. Levels, source appointment, and ecological risk of petroleum hydrocarbons in tropical coastal ecosystems (Northeast Brazil): Baseline for future monitoring programmes of an oil spill area. Environ Pollut. 2021;296:118709. doi: 10.1016/j.envpol.2021.118709

 

  1. White HK, Hsing PY, Cho W, et al. Impact of the deepwater horizon oil spill on a deep-water coral community in the gulf of Mexico. Proc Natl Acad Sci USA. 2012;109(50):20303-20308. doi: 10.1073/pnas.1118029109

 

  1. Jayarathna MD, Rajapaksha AU, Samarasekara S, Vithanage M. Oil spill response: Existing technologies, prospects and perspectives. Clean Mater. 2024;1:78-96. doi: 10.1002/clem.17

 

  1. Zhu Z, Merlin F, Yang M, et al. Recent advances in chemical and biological degradation of spilled oil: A review of dispersants application in the marine environment. J Hazard Mater. 2022;436:129260. doi: 10.1016/j.jhazmat.2022.129260

 

  1. Etiope G, Panieri G, Fattorini D, et al. A thermogenic hydrocarbon seep in shallow Adriatic Sea (Italy): Gas origin, sediment contamination and benthic foraminifera. Mar Pet Geol. 2014;57:283-293. doi: 10.1016/j.marpetgeo.2014.06.006

 

  1. Benedetti M, Gorbi S, Fattorini D, et al. Environmental hazards from natural hydrocarbons seepage: Integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species. Environ Pollut. 2013;185:116-126. doi: 10.1016/j.envpol.2013.10.023

 

  1. Matilda MI, Samuel HS. Bioremediation of oil spill: Concept, methods and applications. Discov Chem. 2024;1(1):42. doi: 10.1007/s44371-024-00038-2

 

  1. Dando PR, Hovland M. Environmental effects of submarine seeping natural gas. Cont Shelf Res. 1992;12(10):1197-1207. doi: 10.1016/0278-4343(92)90079-y

 

  1. Barry PH, De Moor JM, Giovannelli D, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature. 2019;568(7753):487-492. doi: 10.1038/s41586-019-1131-5

 

  1. Fullerton KM, Schrenk MO, Yücel M, et al. Effect of tectonic processes on biosphere-geosphere feedbacks across a convergent margin. Nat Geosci. 2021;14(5):301-306. doi: 10.1038/s41561-021-00725-0

 

  1. Bernard BB, Brooks JM, Sackett WM. Natural gas seepage in the Gulf of Mexico. Earth Planet Sci Lett. 1976;31(1):48-54. doi: 10.1016/0012-821x(76)90095-9

 

  1. Boles JR, Garven G, Peltonen C. Hydrocarbon production reduces natural methane seeps in the Santa Barbara channel. Mar Pet Geol. 2023;151:106187. doi: 10.1016/j.marpetgeo.2023.106187

 

  1. Spatola D, Rovere M, Casalbore D, Chiocci FL. Pockmarks of the Mediterranean region seas: A comprehensive geodatabase for marine geomorphological analysis. Sci Data. 2025;12(1):1049. doi: 10.1038/s41597-025-05369-y

 

  1. Dimitrov L, Woodside J. Deep sea pockmark environments in the Eastern Mediterranean. Mar Geol. 2003;195(1-4):263-276. doi: 10.1016/s0025-3227(02)00692-8

 

  1. El-Sabagh SM, El-Naggar AY, Nady MME, Ebiad MA, Rashad AM, Abdullah ES. Distribution of triterpanes and steranes biomarkers as indication of organic matters input and depositional environments of crude oils of oilfields in Gulf of Suez, Egypt. Egypt J Petrol. 2018;27(4):969-977. doi: 10.1016/j.ejpe.2018.02.005

 

  1. Mara P, Nelson RK, Reddy CM, Teske A, Edgcomb VP. Sterane and hopane biomarkers capture microbial transformations of complex hydrocarbons in young hydrothermal Guaymas Basin sediments. Commun Earth Environ. 2022;3(1):250. doi: 10.1038/s43247-022-00582-8

 

  1. Volkova I, Gura D, Aksenov I. Abiogenic and biogenic petroleum origin: A common theory for geological surveys. Asian J Water Environ Pollut. 2021;18(1):59-65. doi: 10.3233/ajw210008

 

  1. Neff JM. Bioaccumulation in Marine Organisms: Effect of Contaminants from Oil Well Produced Water. Amsterdam: Elsevier; 2002. doi: 1016/B978-0-08-043716-3.X5000-3

 

  1. Van Dover CL. The Ecology of Deep-Sea Hydrothermal Vents. United States: Princeton University Press; 2000. doi: 10.2307/j.ctv1zm2v35

 

  1. Sorigué D, Légeret B, Cuiné S, et al. Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol. 2016;171(4):2393-2405. doi: 10.1104/pp.16.00462

 

  1. Wichmann J, Lauersen KJ, Kruse O. Green algal hydrocarbon metabolism is an exceptional source of sustainable chemicals. Curr Opin Biotechnol. 2019;61:28-37. doi: 10.1016/j.copbio.2019.09.019

 

  1. Harindintwali JD, Xiang L, Wang F, et al. Syntrophy of bacteria and archaea in the anaerobic catabolism of hydrocarbon contaminants. Crit Rev Environ Sci Technol. 2022;53(13):1331-1357. doi: 10.1080/10643389.2022.2134702

 

  1. Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 2012;6(4):847-862. doi: 10.1038/ismej.2011.141

 

  1. Baumas C, Bizic M. A focus on different types of organic matter particles and their significance in the open ocean carbon cycle. Prog Oceanogr. 2024;224:103233. doi: 10.1016/j.pocean.2024.103233

 

  1. Almeda R, Connelly TL, Buskey EJ. How much crude oil can zooplankton ingest? Estimating the quantity of dispersed crude oil defecated by planktonic copepods. Environ Pollut. 2015;208:645-654. doi: 10.1016/j.envpol.2015.10.041

 

  1. Horsfield B, Rullkötter J. Diagenesis, catagenesis and metagenesis of organic matter. In: American Association of Petroleum Geologists eBooks. Berlin: Springer; 1994. p. 189-200. doi: 10.1306/m60585c10

 

  1. Hantson S, Knorr W, Schurgers G, Pugh TAM, Arneth A. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use. Atmos Environ. 2017;155:35-45. doi: 10.1016/j.atmosenv.2017.02.010

 

  1. Bouchertall F. Atmospheric transport and input of hydrocarbons to the subtropical North Atlantic. Mar Chem. 1987;21(3):203-211. doi: 10.1016/0304-4203(87)90059-4

 

  1. Conan G. The long-term effects of the Amoco Cadiz oil spill. Philos Trans R Soc Lond B Biol Sci. 1982;297(1087):323-333. doi: 10.1098/rstb.1982.0045

 

  1. Batten SD, Allen RJS, Wotton COM. The effects of the Sea Empress oil spill on the plankton of the Southern Irish Sea. Mar Pollut Bull. 1998;36(10):764-774. doi: 10.1016/s0025-326x(98)00039-3

 

  1. Moldan AGS, Jackson LF, McGibbon S, Van Der Westhuizen J. Some aspects of the Castillo de Bellver oilspill. Mar Pollut Bull. 1985;16(3):97-102. doi: 10.1016/0025-326x(85)90530-2

 

  1. Bi H, Wang Z, Yue R, et al. Oil spills in coastal regions of the arctic and subarctic: Environmental impacts, response tactics, and preparedness. Sci Total Environ. 2024;958:178025. doi: 10.1016/j.scitotenv.2024.178025

 

  1. Steiner R. Lessons of the Exxon Valdez. United States: Sea Grant; 1990. doi: 10.4027/lotev.1990

 

  1. Afenyo M, Veitch B, Khan F. A State-of-the-art review of fate and transport of oil spills in open and ice-covered water. Ocean Eng. 2015;119:233-248. doi: 10.1016/j.oceaneng.2015.10.014

 

  1. Martinelli M, Luise A, Tromellini E, Sauer TC, Neff JM, Douglas GS. The M/C haven oil spill: Environmental assessment of exposure pathways and resource injury. Int Oil Spill Conf Proceed. 1995;1995(1):679-685. doi: 10.7901/2169-3358-1995-1-679

 

  1. Whitfield J. Prestige: One month on. Nat. 2002. doi: 10.1038/news021216-6

 

  1. Loureiro ML, Loomis JB, Vázquez MX. Economic valuation of environmental damages due to the prestige oil spill in Spain. Environ Resour Econ. 2009;44(4):537-553. doi: 10.1007/s10640-009-9300-x

 

  1. Beiras R, Saco-Álvarez L. Toxicity of seawater and sand affected by the prestige fuel-oil spill using bivalve and sea urchin embryogenesis bioassays. Water Air Soil Pollut. 2006;177(1-4):457-466. doi: 10.1007/s11270-006-9166-2

 

  1. Soto LA, Botello AV, Licea-Durán S, Lizárraga- Partida ML, Yáñez-Arancibia A. The environmental legacy of the Ixtoc-I oil spill in campeche sound, Southwestern Gulf of Mexico. Front Mar Sci. 2014;1:1-9. doi: 10.3389/fmars.2014.00057

 

  1. Valverde RA, Holzwart KR. Sea Turtles of the Gulf of Mexico. Berlin: Springer; 2017. p. 1189-1351. doi: 10.1007/978-1-4939-3456-0_3

 

  1. Mostafawi N. How severely was the Persian Gulf affected by oil spills following the 1991 Gulf War? Environ Geol. 2001;40(10):1185-1191. doi: 10.1007/s002540100238

 

  1. Readman JW, Fowler SW, Villeneuve JP, Cattini C, Oregioni B, Mee LD. Oil and combustion-product contamination of the Gulf marine environment following the war. Nature. 1992;358(6388):662-665. doi: 10.1038/358662a0

 

  1. Mousavi SH, Kavianpour MR, Alcaraz JLG. The impacts of dumping sites on the marine environment: A system dynamics approach. Appl Water Sci. 2023;13(5):109. doi: 10.1007/s13201-023-01910-9

 

  1. Tarr M, Zito P, Overton E, Olson G, Adkikari P, Reddy C. Weathering of oil spilled in the marine environment. Oceanogr. 2016;29(3):126-135. doi: 10.5670/oceanog.2016.77

 

  1. Hazen TC, Prince RC, Mahmoudi N. Marine oil biodegradation. Environ Sci Technol. 2015;50(5):2121-2129. doi: 10.1021/acs.est.5b03333

 

  1. Mackay D, McAuliffe CD. Fate of hydrocarbons discharged at sea. Oil Chem Pollut. 1989;5(1):1-20. doi: 10.1016/s0269-8579(89)80002-4

 

  1. Adebayo O, Bhatnagar S, Webb J, et al. Hydrocarbon-degrading microbial populations in permanently cold deep-sea sediments in the NW Atlantic. Mar Pollut Bull. 2024;208:117052. doi: 10.1016/j.marpolbul.2024.117052

 

  1. Coates JD, Bruce RA, Haddock JD. Anoxic bioremediation of hydrocarbons. Nature. 1998;396(6713):730. doi: 10.1038/25470

 

  1. Zika RG, Cooper WJ. Photochemistry of Environmental Aquatic Systems. United States: American Chemical Society; 1987. doi: 10.1021/bk-1987-0327

 

  1. Ehrhardt M, Petrick G. On the composition of dissolved and particle-associated fossil fuel residues in Mediterranean surface water. Mar Chem. 1993;42(1):57-70. doi: 10.1016/0304-4203(93)90249-n

 

  1. Honda M, Suzuki N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int J Environ Res Public Health. 2020;17(4):1363. doi: 10.3390/ijerph17041363

 

  1. Fahmi AM, Summers S, Jones M, Bowler B, Hennige S, Gutierrez T. Effect of ocean acidification on the growth, response and hydrocarbon degradation of coccolithophore-bacterial communities exposed to crude oil. Sci Rep. 2023;13(1):5013. doi: 10.1038/s41598-023-31784-5

 

  1. Troisi G, Barton S, Bexton S. Impacts of oil spills on seabirds: Unsustainable impacts of non-renewable energy. Int J Hydrogen Energy. 2016;41(37):16549-16555. doi: 10.1016/j.ijhydene.2016.04.011

 

  1. Zhang W, Xie HQ, Li Y, et al. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. J Hazard Mater. 2021;426:128084. doi: 10.1016/j.jhazmat.2021.128084

 

  1. Laffon B, Pásaro E, Valdiglesias V. Effects of exposure to oil spills on human health: Updated review. J Toxicol Environ Health Part B Crit Rev. 2016;19(3-4):105-128. doi: 10.1080/10937404.2016.1168730

 

  1. Mallah MA, Changxing L, Mallah MA, et al. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere. 2022;296:133948. doi: 10.1016/j.chemosphere.2022.133948

 

  1. De Oliveira Estevo M, Lopes PFM, De Oliveira Júnior JGC, et al. Immediate social and economic impacts of a major oil spill on Brazilian coastal fishing communities. Mar Pollut Bull. 2021;164:111984. doi: 10.1016/j.marpolbul.2021.111984

 

  1. Pete AJ, Bharti B, Benton MG. Nano-enhanced bioremediation for oil spills: A review. ACS ES T Eng. 2021;1(6):928-946. doi: 10.1021/acsestengg.0c00217

 

  1. Prince RC. A half century of oil spill dispersant development, deployment and lingering controversy. Int Biodeterior Biodegrad. 2022;176:105510. doi: 10.1016/j.ibiod.2022.105510

 

  1. Jiang Q, Ji M, Wang J, Sun P. Remote sensing methods for striped marine oil spill detection in narrow ship channels. Ocean Eng. 2023;289:116162. doi: 10.1016/j.oceaneng.2023.116162

 

  1. Regoli F, D’Errico G, Nardi A, et al. Application of a weight of evidence approach for monitoring complex environmental scenarios: The case-study of off-shore platforms. Front Mar Sci. 2019;6. doi: 10.3389/fmars.2019.00377

 

  1. Gorbi S, Virno Lamberti C, Notti A, et al. An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic sea. Mar Environ Res. 2007;65(1):34-49. doi: 10.1016/j.marenvres.2007.07.006

 

  1. Kalia A, Sharma S, Semor N, et al. Recent advancements in hydrocarbon bioremediation and future challenges: A review. 3 Biotech. 2022;12(6):135. doi: 10.1007/s13205-022-03199-y
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing