Enhanced adsorption desulfurization performance of metal-modified Y zeolites

Y-zeolite is a promising adsorbent for removing organic sulfides from fuel. However, its application is limited by low adsorption capacity for refractory sulfur compounds. In this study, metal-modified Y-zeolite (MY) adsorbents, incorporating Ru³⁺, Bi³⁺, Zr⁴⁺, and Sb³⁺ ions, were successfully synthesized via a solid-state reaction method. X-ray diffraction analysis confirmed that metal ion incorporation did not alter the crystalline framework of Y-zeolite. Nitrogen adsorption–desorption isotherms revealed that the Ru-modified Y-zeolite (RuY) possessed a notably high specific surface area of 735.23 m²/g, whereas NH₃-temperature programmed desorption (NH₃-TPD) measurements showed that it also had the highest concentration of acidic sites (2.375 mmol/g). The effects of metal ion type, loading amount, and oxidation state on thiophene removal were systematically investigated via batch adsorption experiments. Sulfur removal efficiency increased in the following order: HY (43%) <BiY-1 (53%) <SbY-1(62%) <ZrY-1 (63%) <RuY-1 (68%). The RuY adsorbent exhibited the best adsorption performance, with Ru4+ ions acting as the primary active sites. The adsorption behavior followed the Langmuir isotherm model, indicating a monolayer adsorption process. Sulfur removal efficiency correlated positively with the sulfur–metal (S–M) bond strength in MY adsorbents. Compared to unmodified HY, MY adsorbents also showed improved selectivity for thiophene in the presence of competing toluene. The superior desulfurization performance of RuY is attributed to its smaller ionic radius (62 pm), higher charge (Ru⁴⁺), larger specific surface area, and abundance of Lewis acid sites.
- Yang RT, Hernández-Maldonado AJ, Yang FH. Desulfurization of transportation fuels with zeolites under ambient conditions. Sci Rep. 2003;301:79-81. doi: 10.1126/science.1085313
- Xiao J, Wang X, Fujii M, Yang Q, Chen Y, Song C. A novel approach for ultra-deep adsorptive desulfurization of diesel fuel over TiO₂-CeO₂/MCM-48 under ambient conditions. AIChE J. 2013;59:1441-1445. doi: 10.1002/aic.14045
- Jeevanandam P, Klabunde KJ, Tetzler SH. Adsorption of thiophenes out of hydrocarbons using metal-impregnated nanocrystalline aluminum oxide. Microporous Mesoporous Mater. 2005;79:101-110. doi: 10.1016/j.micromeso.2004.09.005
- Hernández-Maldonado AJ, Yang RT. Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure. Angew Chem Int Ed. 2004;116:1022-1022. doi: 10.1002/ange.200462998
- Xue M, Wen P, Chitrakar R, Ooi K, Feng Q. Screening of inorganic adsorbents for selective adsorption of thiophene from model gasoline. Sep Sci Technol. 2012;47:1926-1936. doi: 10.1080/01496395.2012.663755
- Xue M, Chitrakar R, Sakane K, et al. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium. J Colloid Interface Sci. 2005;285:487-492. doi: 10.1016/j.jcis.2004.12.031
- Tan P, Qin J, Liu X, Yin X, Sun L. Fabrication of magnetically responsive core-shell adsorbents for thiophene capture: AgNO₃-functionalized Fe₃O₄@ mesoporous SiO₂ microspheres. J Mater Chem A. 2014;2:4698-4705. doi: 10.1039/c3ta15026b
- Saleh TA, Sulaiman KO, AL-Hammadi SA, Dafalla H, Danmaliki GI. Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: With column system evaluation. J Clean Prod. 2017;154:401-412. doi: 10.1016/j.jclepro.2017.04.008
- Subhan F, Liu BS. Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents. Chem Eng J. 2011;178:69-77. doi: 10.1016/j.cej.2011.10.024
- Xiao J, Sitamraju S, Chen Y, et al. Air-promoted adsorptive desulfurization of diesel fuel over Ti-Ce mixed metal oxides. AIChE J. 2015;61:631-639. doi: 10.1002/aic.14617
- Chang G, Huang M, Su Y, et al. Immobilization of Ag(I) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature. Chem Commun. 2015;51:2859-2862. doi: 10.1039/C4CC09008B
- Ahmad K, Nazir MA, Qureshi AK, et al. Engineering of zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Mater Sci Eng B. 2020;262:114766. doi: 10.1016/j.mseb.2020.114766
- Khan NA, Najam T, Shah SSA, et al. Development of Mn-PBA on GO sheets for adsorptive removal of ciprofloxacin from water: Kinetics, isothermal, thermodynamic and mechanistic studies. Mater Chem Phys. 2020;245:122737. doi: 10.1016/j.matchemphys.2020.122737
- Tian F, Wu W, Jiang Z, et al. The study of thiophene adsorption onto La(III)-exchanged zeolite NaY by FT-IR spectroscopy. J Colloid Interface Sci. 2006;301:395-401. doi: 10.1016/j.jcis.2006.04.042
- Kim JH, Ma X, Zhou A, Song C. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catal Today. 2006;111:74-83. doi: 10.1016/j.cattod.2005.11.012
- Tang T, Zhang L, Fu W, et al. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities. J Am Chem Soc. 2013;135:11437-11440. doi: 10.1021/ja406393h
- Lin L, Zhang Y, Zhang H, Lu F. Adsorption and solvent desorption behavior of ion-exchanged modified Y zeolites for sulfur removal and for fuel cell applications. J Colloid Interface Sci. 2011;360:753-759. doi: 10.1016/j.jcis.2011.06.040
- Shi Y, Yang X, Tian F, Jia C, Chen Y. Effects of toluene on thiophene adsorption over NaY and Ce(IV)Y zeolites. J Nat Gas Chem. 2012;21:421-425. doi: 10.1016/S1003-9953(11)60394-9
- Tian F, Shen Q, Fu Z, Wu Y, Jia C. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y. Fuel Process Technol. 2014;128:176-182. doi: 10.1016/j.fuproc.2014.05.019
- Lee KX, Valla JA. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Appl Catal B. 2017;201:359-369. doi: 10.1016/j.apcatb.2016.07.028
- Kalita P, Gupta NM, Kumar R. Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al- MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. J Catal. 2007;245:338-347. doi: 10.1016/j.jcat.2006.11.004
- Meng X, Qiu G, Wang G, Cai Q, Wang Y. Durable and regenerable mesoporous adsorbent for deep desulfurization of model jet fuel. Fuel Process Technol. 2013;111:78-85. doi: 10.1016/j.fuproc.2013.03.009
- Shen Y, Li P, Xu X, Liu H. Selective adsorption for removing sulfur: A potential ultra-deep desulfurization approach of jet fuels. RSC Adv. 2012;2:1700-1711. doi: 10.1039/C1RA00831A
- Danmaliki GI, Saleh TA. Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels. J Clean Prod. 2016;117:50-55. doi: 10.1016/j.jclepro.2016.01.034
- Vecchi PA, Ellern A, Angelici RJ. Synthetic, structural, and kinetic studies of [CpRu(CO)2(μ2- η1(S):μ6- DBT) RuCp*][PF6]2: A dibenzothiophene bridge between two ruthenium fragments. Organometallics. 2005;24:3725-3730. doi: 10.1021/om050312s
- Stoffregen SA, Vecchi PA, Ellern A, Angelici RJ. A new approach to the stabilization of dibenzothiophene (DBT) coordination to metals: Studies of (η5-C5H4CH2Ph) Ru(CO)2(η1(S)-DBT)+. Inorg Chim Acta. 2007;360:1711-1716. doi: 10.1016/j.ica.2006.11.022
- Song H, Cui X, Song H, Gao H, Li F. Characteristic and adsorption desulfurization performance of Ag-Ce bimetal ion-exchanged Y zeolite. Ind Eng Chem Res. 2014;53:14552-14557. doi: 10.1021/ie503774e
- Duan L, Gao X, Meng X, et al. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite. J Phys Chem C. 2012;116:25748-25756. doi: 10.1021/jp308013m
- Xue M, Chitrakar R, Sakane K, et al. Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil. J Colloid Interface Sci. 2006;298:535-542. doi: 10.1016/j.jcis.2006.04.028
- Xing ZM, Gao YX, Shi LY, Liu XQ, Jiang Y, Sun LB. Fabrication of gold nanoparticles in confined spaces using solid-phase reduction: Significant enhancement of dispersion degree and catalytic activity. Chem Eng Sci. 2017;158:216-226. doi: 10.1016/j.ces.2016.10.044
- Wang W, Guo S, Lee K, et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep. 2014;4:4452-4460. doi: 10.1038/srep04452
- Hwang JY, El-Kady MF, Wang Y, et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy. 2015;18:57-70. doi: 10.1016/j.nanoen.2015.06.011
- Qadir K, Kim SM, Seo H, et al. Deactivation of Ru catalysts under catalytic CO oxidation by formation of bulk Ru oxide probed with ambient pressure XPS. J Phys Chem C. 2013;117:13108-13113. doi: 10.1021/jp404548n
- Lee JD. A New Concise Inorganic Chemistry. 3rd ed. Japanese: Van Nostrand Reinhold; 1977. p. 323.
- Zhang Z, Ding L, Gu J, et al. 3D charged grid induces a high performance catalyst: Ruthenium clusters enclosed in X-zeolite for hydrogenation of phenol to cyclohexanone. Catal Sci Technol. 2017;7:5953-5963. doi: 10.1039/C7CY01424G
- Darwiche A, Bodenes L, Madec L, Monconduit L, Martinez H. Impact of the salts and solvents on the SEI formation in Sb/Na batteries: An XPS analysis. Electrochim Acta. 2016;207:284-292. doi: 10.1016/j.electacta.2016.04.140
- Thunyaratchatanon C, Luengnaruemitchai A, Chaisuwan T, Chollacoop N, Chen SY, Yoshimura Y. Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption. Microporous Mesoporous Mater. 2017;253:18-28. doi: 10.1016/j.micromeso.2017.05.012
- Xu L, Yan P, Li H, et al. Metallic Bi self-doping BiOCl composites: Synthesis and enhanced photoelectrochemical performance. Mater Lett. 2017;196:225-229. doi: 10.1016/j.matlet.2017.02.025
- Zheng HY, Wang JZ, Li Z, Yan LF, Wen JZ. Characterization and assessment of an enhanced CuY catalyst for oxidative carbonylation of methanol prepared by consecutive liquid-phase ion exchange and incipient wetness impregnation. Fuel Process Technol. 2016;152:367-374. doi: 10.1016/j.fuproc.2016.01.023
- Tang Q, Wang Y, Zhang Q, Wan H. Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer-Tropsch synthesis. Catal Commun. 2003;4:253-258. doi: 10.1016/S1566-7367(03)00024-4
- Cao Y, Zhuang TT, Yang J, Liu HD, Huang W, Zhu H. Promoting zeolite NaY as efficient nitrosamines trap by cobalt oxide modification. J Phys Chem C. 2007;111:538-548. doi: 10.1021/jp066034u
- Ge X, Shi L, Wang X. Dechlorination of reformate via chemical adsorption reactions by Ce-Y zeolite. Ind Eng Chem Res. 2014;53:6351-6357. doi: 10.1021/ie404071z
- Ahmed MHM, Muraza O, Jamil AK, Shafei EN, Yamani ZH, Choi K. Steam catalytic cracking of n-dodecane over Ni and Ni/Co bimetallic catalyst supported on hierarchical BEA zeolite. Energy Fuels. 2017;31:5482-5490. doi: 10.1021/acs.energyfuels.7b00413
- Zeng YJ, Yu HJ, Shi L. Surface acidity and catalytic activity of Y-zeolite catalysts. J East China Univ Sci Technol Nat Sci Ed. 2008;34(5):635-640.
- Wang WY, Pan MX, Qin YC, Wang LT, Song LJ. Effects of surface acidity on the adsorption desulfurization of Cu(I) Y zeolites. Acta Phys-Chim Sin. 2011;27(5):1176-1180. doi: 10.3866/PKU.WHXB20110442
- Skarlis SA, Berthout D, Nicolle A, Dujardin C, Granger P. Multisite modeling of NH3 adsorption and desorption over Fe-ZSM5. J Phys Chem C. 2012;116:8437-8448. doi: 10.1021/jp302324q
- Aslam S, Subhan F, Yan Z, et al. Unusual nickel dispersion in confined spaces of mesoporous silica by one-pot strategy for deep desulfurization of sulfur compounds and FCC gasoline. Chem Eng J. 2017;321:48-57. doi: 10.1016/j.cej.2017.03.043
- Bartholomew CH. Mechanisms of catalyst deactivation. Appl Catal A Gen. 2001;212:17-60. doi: 10.1016/S0926-860X(00)00843-5
- Song H, Jiang BL, Song HL, Jin ZS, Sun XL. Preparation of AgY zeolite and study on its adsorption equilibrium and kinetics. Res Chem Intermed. 2015;41:3837-3854. doi: 10.1007/s11164-014-1844-z
- Li J, Gyoten H, Sonoda A, Feng Q, Xue M. Removal of trace arsenic to below drinking water standards using a Mn-Fe binary oxide. RSC Adv. 2017;7:1490-1497. doi: 10.1039/C6RA24862D
- Xiong J, Yang L, Chao Y, et al. Boron nitride mesoporous nanowires with doped oxygen atoms for the remarkable adsorption desulfurization performance from fuels. ACS Sustain Chem Eng. 2016;4:4457-4464. doi: 10.1021/acssuschemeng.6b00914