AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025070039
ORIGINAL RESEARCH ARTICLE

Statistical analysis of wind energy potential in Mongo, Chad, for small-scale renewable applications

Ali Sidick Bahar1 Adoum Kriga1 Ali Ramadan Ali1 Abakar Mahamat Tahir2 Adoum Danao Adile1 Fabien Kenmogne3*
Show Less
1 Department of Industrial Engineering and Maintenance, Faculty of Engineering Sciences and Techniques, Polytechnic University of Mongo, Mongo, Guéra region, Chad
2 Laboratory of Renewable Energy and Materials Premises, Faculty of Exact and Applied Sciences, University of Ndjamena, Ndjamena, Chad
3 Department of Civil Engineering, Advanced Teachers Training College of the Technical Education, University of Douala, Douala, Littoral Region, Cameroon
Received: 10 February 2025 | Revised: 14 July 2025 | Accepted: 15 July 2025 | Published online: 6 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Wind plays a crucial role in various physical applications, including wind energy and pollutant transport and diffusion. Wind varies from both temporal and spatial perspectives. This paper presents a statistical analysis of wind energy potential in Mongo, the capital city of Guéra Province, Chad, using 11 years of data obtained from the local meteorological station. Using the Weibull distribution function, we analyzed the wind speed probability distributions based on the wind data obtained. The obtained results, based on average annual wind speed and energy generation, indicate that Mongo is suitable only for small-scale wind energy applications. The average wind speed within the chosen time interval is 3.2 m/s, which is classified as Class 1 according to the international system of wind classification. Wind rose plots illustrate that the wind directions vary across the years. The temperature data were also plotted, reporting an average temperature of 27.76°C over the 11-year study period. This indicates that Mongo has a relatively hot climate, which may contribute to the modest but consistent wind speeds observed in this city.

Keywords
Wind energy potential
Renewable energy
Wind and temperature data
Weibull distribution function
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Nediguina MK, Tahir AM, Barka M, Soulouknga MH, Nsouandele JL. Evaluation of the wind power potential in the northeast of Chad. J Renew Energies. 2022;25(1):109-126. doi: 10.54966/jreen.v25i1.1075

 

  1. Soulouknga MH, Oyedepo SO, Doka SY, Kofané TC. Assessment of wind energy potential in the Sudanese zone in Chad. Energy Power Eng. 2017;9(7):386-402. doi: 10.4236/epe.2017.97026

 

  1. Ouedraogo AO, Doka SY, Revanna N, Djongyang N, Kofané TC. Analysis of wind speed data and wind energy potential in faya-largeau, chad, using weibull distribution. Renew Energy. 2018;121:1-8. doi: 10.1016/j.renene.2018.01.002

 

  1. International Energy Agency. Africa Energy Outlook 2022. Paris, France: IEA; 2022.

 

  1. Agence Pour Le Développement Des Energies Renouvelables (ADER) Et Ministère Du Pétrole Et De l’Énergie Du Tchad. Plan Général D’action Des Energies Renouvelables 2017-2030. N’Djaména, Tchad: ADER; 2017.

 

  1. Tchinda R, Kendjio J, Kaptouom E, Njomo D. Estimation of mean wind energy available in far north Cameroon. Energy Convers Manage. 2000;41(17):1917-1929. doi: 10.1016/S0196-8904(00)00017-0

 

  1. United Nations Environment Programme. Renewable Energy Law and Policy Review: Selected African Countries. Nairobi, Kenya: UNEP; 2019.

 

  1. Kassem Y, Çamur H, Abughinda SAM, Şefik A. Wind energy potential assessment in selected regions in northern cyprus based on weibull distribution function. J Eng Appl Sci. 2020;15(1):128-140. doi: 10.3923/jeasci.2020.128.140

 

  1. Akpinar EK, Akpinar S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers Manage. 2005;46(4):515-532. doi: 10.1016/j.enconman.2004.07.007

 

  1. Ahmed Shata AS, Hanitsch R. Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt. Renew Energy. 2006;31:1183-1202. doi: 10.1016/j.renene.2005.07.012

 

  1. Celik AN. Statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renew Energy. 2004;29:593-604. doi: 10.1016/j.renene.2003.07.001

 

  1. Carta JA, Ramirez P, Velazquez S. A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renew Sustain Energy Rev. 2009;13(5):933-955. doi: 10.1016/j.rser.2008.02.008

 

  1. Zhou J, Erdem E, Li G, Shi J. Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites. Energy Convers Manage. 2010;51:1449-1458. doi: 10.1016/j.enconman.2010.01.005

 

  1. Chellali F, Khellaf A, Belouchrani A, Khanniche R. A comparison between wind speed distributions derived from the maximum entropy principle and Weibull distribution. Case of study; six regions of Algeria. Renew Sustain Energy Rev. 2012;16(1):379-385. doi: 10.1016/j.rser.2011.08.002

 

  1. Li M, Li X. Investigation of wind characteristics and assessment of wind energy potential for Waterloo Region, Canada. Energy Convers Manage. 2005;46: 3014-3033. doi: 10.1016/j.enconman.2005.02.011

 

  1. Okorie OC, Ajayi NO, Bamisile OS, et al. Evaluating wind energy resources for remote communities in West Africa. Renew Sustain Energy Rev. 2022;160:112282. doi: 10.1016/j.rser.2022.112282

 

  1. Ghasemi A, Hosseini AS, Marashi SPH. Wind energy resource assessment using Weibull parameters and GIS: A case study for the province of Yazd. Renew Sustain Energy Rev. 2013;28:496-504. doi: 10.1016/j.rser.2013.08.016

 

  1. Ghaffari M, Alavi A, Dehghan S. Wind energy potential assessment in arid regions using GIS-based Weibull analysis: A case study in central Iran. Renew Energy. 2021;168:1241-1252. doi: 10.1016/j.renene.2021.01.115

 

  1. Gupta NK, Kumar S. Statistical modeling of wind speed and wind power assessment using Weibull and Rayleigh models in India. Energy Rep. 2020;6:2431-2441. doi: 10.1016/j.egyr.2020.08.099

 

  1. Kim TH, Lim HC. A comparative study of wind speed distributions using entropy and Weibull functions. Energies. 2020;13(4):1-18. doi: 10.3390/en13040954

 

  1. Nyarko KA, Whale J, Urmee T. Drivers and challenges of off-grid renewable energy-based projects in West Africa: A review. Heliyon. 2023;9(5):e16710. doi: 10.1016/j.heliyon.2023.e16710

 

  1. Nasiri F, Yari M, Ameri M. Wind resource assessment and feasibility study in southeastern Iran. Renew Energy. 2021;164:869-882. doi: 10.1016/j.renene.2020.08.037

 

  1. Nasiri AA, Yılmaz A, Özdemir E. Assessment of wind energy potential using Weibull parameters: A case study from Turkey. Energy Sources A. 2023;45(6):1154-1170. doi: 10.1080/15567036.2020.1751015

 

  1. Medjo Nouadje BA, Kelly E, Djiela RHT, Kapen PT, Tchuen G, Tchinda R. Chad’s wind energy potential: An assessment of Weibull parameters using thirteen numerical methods for a sustainable development. Int J Ambient Energy. 2023;45(1):2276119. doi: 10.1080/01430750.2023.2276119

 

  1. Aslam M, Raza SAR, Khan TH. Wind energy assessment for remote areas in Pakistan. Energy Rep. 2020;6:1547-1558. doi: 10.1016/j.egyr.2020.02.017

 

  1. Gökçek M, Bayülgen M. A feasibility study for wind energy in Kirklareli, Turkey. Renew Sustain Energy Rev. 2007;11(9):2183-2190. doi: 10.1016/j.rser.2006.04.012

 

  1. Petkovic D, Ilic D, Milinkovic M. Comparison of wind speed models for low wind resource sites. Energy. 2020;210:118572. doi: 10.1016/j.energy.2020.118572

 

  1. Saidur R, Rahim NA, Islam MR, Solangi KH. A review on global wind energy policy. Renew Sustain Energy Rev. 2010;14:1744-1762. doi: 10.1016/j.rser.2010.03.008

 

  1. Yu X, Qu H. Wind power in China-opportunity goes with challenge. Renew Sustain Energy Rev. 2010;14:2232-2237. doi: 10.1016/j.rser.2009.11.003

 

  1. International Renewable Energy Agency. Off-Grid Renewable Energy Systems: Status and Methodological Issues. Abu Dhabi, UAE: IRENA; 2015.

 

  1. Arreyndip NA, Joseph E. Generalized extreme value distribution models for the assessment of seasonal wind energy potential of Debuncha, Cameroon. J Renew Energy. 2016;2016:9357812. doi: 10.1155/2016/9357812

 

  1. Tuncar EA, Sağlam S, Oral B. A review of short-term wind power generation forecasting methods in recent technological trends. Energy Rep. 2024;12:197-209. doi: 10.1016/j.egyr.2024.06.006

 

  1. Jeon J, Taylor JW. Using conditional kernel density estimation for wind power density forecasting. J Am Stat Assoc. 2012;107(497):66-79. doi: 10.1080/01621459.2011.643745

 

  1. Jurado X, Reiminger N, Vazquez J, Wemmert C. On the minimal wind directions required to assess mean annual air pollution concentration based on CFD results. Sustain Cities Soc. 2021;71:102920. doi: 10.1016/j.scs.2021.102920

 

  1. Mandal S, Kundu S, Mondal S. Statistical modeling of wind speed data using empirical and theoretical distributions. Renew Energy, 2019;134:983-992. doi: 10.1016/j.renene.2018.11.056

 

  1. Jeutho MG, Kenmogne F, Yemélé D. How to use the temperature data to find the appropriate site for best wind speed generation? Applications on data obtained from three different cities of Cameroon. Int J Sci Eng Sci. 2018;2(4):53-62.

 

  1. Grace EA, Rekha ASP, Thenaras M. Automated solar powered pumping systems for irrigation. Int J Pure Appl Math. 2017;114(7):507-516.

 

  1. Mostafaeipour A, Jadidi M, Mohammadi K, Sedaghat A. An analysis of wind energy potential and economic evaluation in Zahedan, Iran. Renew Sustain Energy Rev. 2014;30:641-650. doi: 10.1016/j.rser.2013.11.016

 

  1. Ali RA, Nediguina MK, Gouajio M, et al. Effects of adding the antiparallel diodes in a model of solar photovoltaic cell: Theory and PSpice simulations. J Mod Green Energy. 2024;3:4. doi: 10.53964/jmge.2024004

 

  1. Jeutho MG, Kenmogne F, Yemélé D. Statistical estimation of mean wind energy available in western region of Cameroon: Case of the Bafoussam’s city. J Harmoniz Res Eng. 2017;5(1):15-27.

 

  1. Manwell JF, McGowan JG, Rogers AL. Wind Energy Explained: Theory, Design and Application. 2nded. Chichester, UK: Wiley; 2009.

 

  1. Ouedraogo NS. Modeling sustainable long-term electricity supply-demand in Africa. Appl Energy. 2017;190:1047-1067. doi: 10.1016/j.apenergy.2016.12.162

 

  1. Bishoge OK, Kombe GG, Mvile BN. Renewable energy for sustainable development in Sub-Saharan African countries: Challenges and way forward. J Renew Sustain Energy. 2020;12(5):052702. doi: 10.1063/5.0009297

 

  1. Bhandari B, Lee KT, Lee CS, Song CK, Maskey RK, Ahn SH. A review on solar and wind energy systems for off-grid rural electrification in developing countries. Renew Sustain Energy Rev. 2014;38:258-268. doi: 10.1016/j.rser.2014.05.057

 

  1. United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. UN Res A/RES/70/1. New York, NY: United Nations; 2015.

 

  1. Bekele G, Palm B. Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia. Appl Energy. 2010;87(2):487-495. doi: 10.1016/j.apenergy.2009.06.006

 

  1. Abdmouleh Z, Alammari RAM, Gastli A. Recommendations on renewable energy policies for the GCC countries. Renew Sustain Energy Rev. 2015;50:1181-1191. doi: 10.1016/j.rser.2015.05.057

 

  1. Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew Sustain Energy Rev. 2009;13(6-7):1513-1522. doi: 10.1016/j.rser.2009.06.045
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing