AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025130095
REVIEW ARTICLE

A comprehensive review of biomass-derived heterogeneous catalysts for efficient biodiesel production

Amit Kumar Rajak1,2 Shivani Dalal1 Madiga Harikrishna2 Uttam Kumar Sahoo3 Mallampalli S.L. Karuna2* Prakash Kumar Sarangi4*
Show Less
1 Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
2 Department of Oils, Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
3 Department of Forestry, School of Earth Science and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
4 Department of Agricultural Engineering, College of Agriculture, Central Agricultural University, Imphal, Manipur, India
Received: 29 April 2025 | Revised: 29 May 2025 | Accepted: 3 June 2025 | Published online: 29 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The transesterification process for biodiesel production relies on efficient catalysts to accelerate the chemical reactions involved. Choosing the appropriate catalyst is crucial and depends primarily on the free fatty acid content of the oil feedstock. Conventional biodiesel production processes typically employ homogeneous catalysts, which present several disadvantage, including toxicity, high flammability, corrosiveness, and significant effluent generation. Consequently, there is growing interest in biomass-derived heterogeneous catalysts and bio-waste, as these offer sustainable, recyclable, and environmentally friendly alternatives. These catalysts exhibit excellent stability and catalytic efficiency in both acidic and basic environments, as well as superior water resistance. This review provides an in-depth analysis of biomass-based heterogeneous catalysts, emphasizing their potential for sustainable biodiesel production. The primary focus is on the usage of biomass and bio-waste-derived catalysts for producing cost-effective biodiesel. This review offers an overview of present methods for synthesizing various types of catalysts, such as basic, acidic, bifunctional, and nanocatalysts, using a range of feedstocks. Furthermore, it explores the impact of different catalyst preparation techniques on biodiesel yield and evaluates the sustainability of these catalysts. This study also identifies gaps in the present literature on biomass-derived heterogeneous catalysts and other biocatalysts, offering suggestions for future research avenues.

Keywords
High catalytic activity
Homogeneous catalysts
Transesterification process
Biomass waste
Heterogeneous catalysts
Funding
None.
Conflict of interest
Prakash Kumar Sarangi is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Neupane D. Biofuels from renewable sources, a potential option for biodiesel production. Bioengineering (Basel). 2023;10(1):29. doi: 10.3390/bioengineering10010029

 

  1. Malik K, Capareda SC, Kamboj BR, et al. Biofuels production: A review on sustainable alternatives to traditional fuels and energy sources. Fuels. 2024;5:157-175. doi: 10.3390/fuels5020010

 

  1. Holechek JL, Geli HME, Sawalhah MN, Valdez R. A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability. 2022;14:4792. doi: 10.3390/su14084792

 

  1. Dai J, Alvarado R, Ali S, Ahmed Z, Meo MS. Transport infrastructure, economic growth, and transport CO2 emissions nexus: Does green energy consumption in the transport sector matter? Environ Sci Pollut Res Int. 2023;30:40094-40106. doi: 10.1007/s11356-022-25100-3

 

  1. Toldrá-Reig F, Mora L, Toldrá F. Developments in the use of lipase transesterification for biodiesel production from animal fat waste. Appl Sci. 2020;10:5085. doi: 10.3390/app10155085

 

  1. Brahma S, Nath B, Basumatary B, et al. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem Eng J Adv. 2022;10:100284. doi: 10.1016/j.ceja.2022.100284

 

  1. Deep A, Sharma AL, Kumar P. Lipase immobilized carbon nanotubes for conversion of Jatropha oil to fatty acid methyl esters. Biomass Bioenergy. 2015;81:83-87. doi: 10.1016/j.biombioe.2015.06.008

 

  1. Al-Mashhadani HA, Mallawarachchi S, Wang H, Fernando S. A bio-based hydrolysis catalyst for the transesterification of triglycerides. Bioresour Technol Rep. 2021;15:100750. doi: 10.1016/j.biteb.2021.100750

 

  1. Gog A, Roman M, Toşa M, Paizs C, Irimie FD. Biodiesel production using enzymatic transesterification - current state and perspectives. Renew Energy. 2012;39:10-16. doi: 10.1016/j.renene.2011.08.007

 

  1. Megía PJ, Vizcaíno AJ, Calles JA, Carrero A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy Fuels. 2021;35(20):16403-16415. doi: 10.1021/acs.energyfuels.1c02501

 

  1. Jain R, Panwar NL, Agarwal C, Gupta T. A comprehensive review on unleashing the power of hydrogen: Revolutionizing energy systems for a sustainable future. Environ Sci Pollut Res Int. 2024;32:13329-13359. doi: 10.1007/s11356-024-33541-1

 

  1. Mizik T, Gyarmati G. Economic and sustainability of biodiesel production-a systematic literature review. Clean Technol. 2021;3:19-36. doi: 10.3390/cleantechnol3010002

 

  1. Martins J, Brito FP. Alternative fuels for internal combustion engines. Energies. 2020;13:4086. doi: 10.3390/en13164086

 

  1. Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int J Environ Res Public Health. 2017;15(1):16. doi: 10.3390/ijerph15010016

 

  1. Goren AY, Dincer I, Gogoi SB, Boral P, Patel D. Recent developments on carbon neutrality through carbon dioxide capture and utilization with clean hydrogen for production of alternative fuels for smart cities. Int J Hydrogen Energy. 2024;79:551-578. doi: 10.1016/j.ijhydene.2024.06.421

 

  1. Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001;92:405-416. doi: 10.1016/S1389-1723(01)80288-7

 

  1. Verhelst S, Turner JW, Sileghem L, Vancoillie J. Methanol as a fuel for internal combustion engines. Progress Energy Combust Sci. 2019;70:43-88. doi: 10.1016/j.pecs.2018.10.001

 

  1. Supongsenla A, Changmai B, Vanlalveni C, et al. Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges. Renew Energy. 2024;223:120031. doi: 10.1016/j.renene.2024.120031

 

  1. Iglesias J, Martínez-Salazar I, Maireles-Torres P, Alonso DM, Mariscal R, Granados ML. Advances in catalytic routes for the production of carboxylic acids from biomass: A step forward for sustainable polymers. Chem Soc Rev. 2020;49:5704-5771. doi: 10.1039/D0CS00177E

 

  1. Agarwal M, Chauhan G, Chaurasia SP, Singh K. Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. J Taiwan Inst Chem Eng. 2012;43(1):89-94. doi: 10.1016/j.jtice.2011.06.003

 

  1. Ghosh N, Halder G. Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: A review. Energy Convers Manage. 2022;270:116292. doi: 10.1016/j.enconman.2022.116292

 

  1. García-Serna J, Piñero-Hernanz R, Durán-Martín D. Inspirational perspectives and principles on the use of catalysts to create sustainability. Catal Today. 2022;387:237-243. doi: 10.1016/j.cattod.2021.11.021

 

  1. Wang B, Wang B, Shukla SK, Wang R. Enabling catalysts for biodiesel production via transesterification. Catalysts. 2023;13:740. doi: 10.3390/catal13040740

 

  1. Nisar S, Hanif MA, Rashid U, Hanif A, Akhtar MN, Ngamcharussrivichai C. Trends in widely used catalysts for fatty acid methyl esters (fame) production: A review. Catalysts. 2021;11:1085. doi: 10.3390/catal11091085

 

  1. Gunter F, Martin W, Christian R, Eckhard B, Martin B. Modelling production cost scenarios for biofuels and fossil fuels in Europe. Lecture Notes Energy. 2014;7:93-115. doi: 10.1007/978-1-4471-6482-1-5

 

  1. Alemu T, Alemu AG. Recent developments in catalysts for biodiesel production applications. Adv Bio. 2023;4:1-18. doi: 10.5772/intechopen.109483

 

  1. Anand S, Chinnakonda B, Gopinath S. Catalytic applications of hydrotalcite and related materials in multi-component reactions: Concepts, challenges and future scope. Sustain Chem Pharm. 2021;22:100458. doi: 10.1016/j.scp.2021.100458

 

  1. Mukhtar A, Saqib S, Lin H, et al. Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew Sustain Energy Rev. 2022;157:112012. doi: 10.1016/j.rser.2021.112012

 

  1. Klaewkla R, Arend M, Hoelderich WF. De Mass Transfer Advanced Aspects. Vol. 7. United Kingdom: IntechOpen; 2011. p. 29. doi: 10.5772/22962

 

  1. Liu Y, Biswas B, Hassan M, Naidu R. Green adsorbents for environmental remediation: Synthesis methods, ecotoxicity, and reusability prospects. Processes. 2024;12:1195. doi: 10.3390/pr12061195

 

  1. Reyes L, Nicolás-Vázquez I, Mora-Diez N, Alvarez- Idaboy IR. Acid-catalyzed nucleophilic additions to carbonyl groups: Is the accepted mechanism the rule or an exception? J Organ Chem. 2013;78:2327-2375. doi: 10.1021/jo302390r

 

  1. Khader EH, Muslim SA, Cata Saady NM, et al. Recent advances in photocatalytic advanced oxidation processes for organic compound degradation: A review. Desalination Water Treat. 2024;318:100384. doi: 10.1016/j.dwt.2024.100384

 

  1. López DE, Goodwin JG Jr., Bruce DA, Lotero E. Transesterification of triacetin with methanol on solid acid and base catalysts. Appl Catal A Gen. 2005;295:97-105. doi: 10.1016/j.apcata.2005.07.055

 

  1. Singh AP, He B, Thompson J, Gerpen J. Process optimization of biodiesel production using alkaline catalysts. Appl Eng Agric. 2006;22:597-600. doi: 10.13031/2013.21213

 

  1. Naveenkumar R, Baskar G. Biodiesel production from Calophyllum inophyllum oil using zinc doped calcium oxide (Plaster of Paris) nanocatalyst. Bioresour Technol. 2019;280:493-496. doi: 10.1016/j.biortech.2019.02.078

 

  1. Soeratri W, Hidayah R, Rosita N. Effect of combination soy bean oil and oleic acid to characteristic, penetration, physical stability of nanostructure lipid carrier resveratrol. Fol Med Indones. 2019;55:213-222. doi: 10.20473/fmi.v55i3.15505

 

  1. Maroa S, Inambao F. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Eng Life Sci. 2021;21(12):790-824. doi: 10.1002/elsc.202100025

 

  1. Pastore C, Lopez A, Mascolo G. Efficient conversion of brown grease produced by municipal wastewater treatment plant into biofuel using aluminium chloride hexahydrate under very mild conditions. Bioresour Technol. 2014;155:91-97. doi: 10.1016/j.biortech.2013.12.106

 

  1. Din NAS, Lim SJ, Maskat MY, et al. Lactic acid separation and recovery from fermentation broth by ion-exchange resin: A review. Bioresour Bioprocess. 2021;8:31. doi: 10.1186/s40643-021-00384-4

 

  1. Nguyen HD, Nguyen MH, Nguyen TD, Nguyen PT. Nephelium lappaceum oil: A low-cost alternative feedstock for sustainable biodiesel production using magnetic solid acids. Environ Progress Sustain Energy. 2015;35:603-610. doi: 10.1002/ep.12254

 

  1. Teo SH, Goto M, Taufiq-Yap YH. Biodiesel production from Jatropha curcas L. Oil with ca and la mixed oxide catalyst in near supercritical methanol conditions. J Supercrit Fluids. 2015;104:243-250. doi: 10.1016/j.supflu.2015.06.023

 

  1. Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol. 2011:102:6192-6199. doi: 10.1016/j.biortech.2011.02.035

 

  1. Shah KA, Parikh JK, Maheria KC. Use of sulfonic acid-functionalized silica as catalyst for esterification of free fatty acids (FFA) in acid oil for biodiesel production: An optimization study. Res Chem Intermed. 2021;41:1035-1051. doi: 10.1007/s11164-013-1253-6

 

  1. Xie W, Yang X, Hu P. Cs2.5H0.5PW12O40 encapsulated in metal-organic framework UiO-66 as heterogeneous catalysts for acidolysis of soybean oil. Catal Lett. 2017;147:2772-2782. doi: 10.1007/s10562-017-2189-z

 

  1. Peng C, Yu D, Zhang C, et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous-mesoporous TixSi1-xO2 catalysts: Preparation and catalytic performance for soot combustion. J Environ Sci (China). 2023;125:82-94. doi: 10.1016/j.jes.2021.10.029

 

  1. Babak S, Iman H, Zuhairi AA. Statistical evaluation of the pertinent parameters in bio-synthesis of Ag/MWf- CNT composites using plackett-burman design and response surface methodology. Iran J Chem Chem Eng Int English Ed. 2013;32(7):113-126.

 

  1. Athar M, Zaidi S, Hassan SZ. Intensification and optimization of biodiesel production using microwave-assisted acid-organo catalyzed transesterification process. Sci Rep. 2020;10:21239. doi: 10.1038/s41598-020-77798-1

 

  1. Kedir WM, Wondimu KT, Weldegrum GS. Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell. Heliyon. 2023;9(5):e16475. doi: 10.1016/j.heliyon.2023.e16475

 

  1. Al-Zeghayer YS, Jibril BY. On the effects of calcination conditions on the surface and catalytic properties of γ-Al2O3-supported CoMo hydrodesulfurization catalysts. Appl Catal A Gen. 2005;292:287-294. doi: 10.1016/j.apcata.2005.06.014

 

  1. Zul NA, Ganesan S, Hamidon TS, Oh WD, Hussin MH. A review on the utilization of calcium oxide as a base catalyst in biodiesel production. J Environ Chem Eng. 2021;9(4):105741. doi: 10.1016/j.jece.2021.105741

 

  1. Wang J, Wang P, Yoshida A, et al. Mn-Co oxide decorated on cu nanowires as efficient catalysts for catalytic oxidation of toluene. Carbon Resour Convers. 2020;3:36-45. doi: 10.1016/j.crcon.2020.02.001

 

  1. Li H, Wang T, Wang Y, et al. Catalytic activity enhancement of sulfated metal oxide by doping Co on MIL-100(Fe) for esterification. Fuel. 2023;334:126631. doi: 10.1016/j.fuel.2022.126631

 

  1. Abitha M, Viswanathan C, Ponpandian N. Oxide derivatives of metal-organic frameworks for water splitting: A concise review. Sustain Energy Fuels. 2025;9:921-941. doi: 10.1039/D4SE01525H

 

  1. Boro J, Konwar LJ, Deka D. Transesterification of non edible feedstock with lithium incorporated egg shell derived CaO for biodiesel production. Fuel Process Technol. 2014;122:72-78. doi: 10.1016/j.fuproc.2014.01.022

 

  1. Zhang Z, Meng P, Luo H, Pei Z, Liu X. 10.3390/ catal14100731. Catalysts. 2024;14:731. doi: 10.3390/catal14100731

 

  1. Amani H, Ahmad Z, Hameed BH. Highly active alumina-supported Cs-Zr mixed oxide catalysts for low-temperature transesterification of waste cooking oil. Appl Catal A Gen. 2014;487:16-25. doi: 10.1016/j.apcata.2014.08.038

 

  1. Lachter ER, Rodrigues JA, Teixeira VG, et al. Use of Ion-Exchange Resins in Alkylation Reactions. Vol. 2. Cham: Springer; 2019. p. 35-74. doi: 10.1007/978-3-030-06085-5-3

 

  1. Vasić K, Podrepšek GH, Knez Z, Leitgeb M. Biodiesel production using solid acid catalysts based on metal oxides. Catalysts. 2020;10:237. doi: 10.3390/catal10020237

 

  1. Chai F, Cao F, Zhai F, Chen Y, Wang X, Su Z. Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst. Adv Synth Catal. 2007;349(7):1057-1065. doi: 10.1002/adsc.200600419

 

  1. Lugo Del Ángel FE, Silva-Rodrigo R, Rodríguez AV, et al. Studies on the catalytic activity of sulfated zirconia promoted with cerium oxide. Adv Mater Res. 2010;132:149-161. doi: 10.4028/www.scientific.net/AMR.132.149

 

  1. Ma Y, Tong W, Zhou H, Suib SL. A review of zeolite-like porous materials. Microporous Mater. 2000;37:243-252. doi: 10.1016/S1387-1811(99)00199-7

 

  1. Perego C, Carati A. Zeolites: From Model Materials to Industrial Catalysts. Kerala: Transworld Research Network; 2008. p. 357-389.

 

  1. Martins A, Nunes N, Carvalho AP, Martins LMD. Zeolites and related materials as catalyst supports for hydrocarbon oxidation reactions. Catalysts. 2022;12:154. doi: 10.3390/catal12020154

 

  1. Patiño Y, Faba L, Peláez R, et al. The role of ion exchange resins for solving biorefinery catalytic processes challenges. Catalysts. 2023;13:999. doi: 10.3390/catal13060999

 

  1. Pérez-Botella E, Valencia S, Rey F. Zeolites in adsorption processes: State of the art and future prospects. Chem Rev. 2022;122(24):17647-17695. doi: 10.1021/acs.chemrev.2c00140

 

  1. Mansir N, Taufiq-Yap YH, Rashid U, Lokman MI. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Convers Manage. 2017;141:171-182. doi: 10.1016/j.enconman.2016.07.037

 

  1. Chozhavendhan S, Rajamehala M, Karthigadevi G, Praveenkumar R, Bharathiraja B. A review on feedstock, pretreatment methods, influencing factors, production and purification processes of bio-hydrogen production. Case Stud Chem Environ Eng. 2020;2:100038. doi: 10.1016/j.cscee.2020.100038

 

  1. Ansari M, Jamali H, Ghanbari R, Ehrampoush MH, Zamani P, Hatami B. Heterogeneous solid acid catalysts for sustainable biodiesel production from wastewater-derived sludge: A systematic and critical review. Syst Crit Rev. 2024;5:1-21. doi: 10.20944/preprints202405.1324.v1

 

  1. Moghaddam AL, Hazlett MJ. Methanol dehydration catalysts in direct and indirect dimethyl ether (DME) production and the beneficial role of DME in energy supply and environmental pollution. J Environ Chem Eng. 2023;11:110307. doi: 10.1016/j.jece.2023.110307

 

  1. Khaleque A, Alam MM, Hoque M, et al. Zeolite synthesis from low-cost materials and environmental applications: A review. Environ Adv. 2020;2:100019. doi: 10.1016/j.envadv.2020.100019

 

  1. Alagumalai A, Mahian O, Hollmann F, Zhang W. Environmentally benign solid catalysts for sustainable biodiesel production: A critical review. Sci Total Environ. 2021;768:144856. doi: 10.1016/j.scitotenv.2020.144856

 

  1. Pattanaik PP, Pradhan S, Bej A, Pradhan G. Solid waste derived heterogeneous catalysts for synthesis of sustainable glycerol carbonate from glycerol. Biomass Bioenergy. 2025;193:107598. doi: 10.1016/j.biombioe.2025.107598

 

  1. Marwaha A, Rosha P, Mohapatra SK, Mahla SK, Dhir A. Waste materials as potential catalysts for biodiesel production: Current state and future scope. Fuel Process Technol. 2018;181:175-186. doi: 10.1016/j.fuproc.2018.09.011

 

  1. Nabgan W, Nabgan B, Ikram M, et al. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum. Chemosphere. 2022;290:133296. doi: 10.1016/j.chemosphere.2021.133296

 

  1. Peng-Lim B, Pragas MG, Shafida Abd M. Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chem Eng J. 2011;168:15-22. doi: 10.1016/j.cej.2011.01.009

 

  1. Bi Z, He BB. Phospholipid transesterification in sub-/ super-critical methanol with the presence of free fatty acids. Fuel. 2015;466:461-466. doi: 10.1016/j.fuel.2015.11.009

 

  1. Gómez-Calvo A, Gallardo ME, Ladero M. Lipozyme® tl im biocatalyst for castor oil FAME and triacetin production by interesterification: Activity, stability, and kinetics. Catalysts. 2022;12:1673. doi: 10.3390/catal12121673

 

  1. Abdulla R, Ravindra P. Immobilized Burkholderia Cepacia lipase for biodiesel production from crude Jatropha curcas L. Oil. Biomass Bioenergy. 2013;56:8-13. doi: 10.1016/j.biombioe.2013.04.010

 

  1. Kannoju B, Ganapathiwar S, Nunavath H, Sunkar B, Bhukya B. Plausible exploitation of Jatropha de-oiled seed cake for lipase and phytase production and simultaneous detoxification by Candida parapsilosis isolated from poultry garbage. Bioresour Technol. 2017;225:215-224. doi: 10.1016/j.biortech.2016.11.065

 

  1. Rodrigues J, Perrier V, Lecomte J, Dubreucq E, Ferreira- Dias S. Biodiesel production from crude Jatropha oil catalyzed by immobilized lipase/acyltransferase from Candida parapsilosis in aqueous medium. Bioresour Technol. 2016;218:1224-1229. doi: 10.1016/j.biortech.2016.07.090

 

  1. Neugnot V, Moulin G, Dubreucq E, Bigey F. The lipase/ acyltransferase from Candida parapsilosis: Molecular cloning and characterization of purified recombinant enzymes. Eur J Biochem. 2002;269:1734-1745. doi: 10.1046/j.1432-1327.2002.02828.x

 

  1. Singh S, Sharma PK, Chaturvedi S, et al. Biocatalyst for the synthesis of natural flavouring compounds as food additives: Bridging the gap for a more sustainable industrial future. Food Chem. 2024;435:137217. doi: 10.1016/j.foodchem.2023.137217

 

  1. João HC, Michel B, Maicon SN, et al. Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances. Renew Energy. 2023;216:119085. doi: 10.1016/j.renene.2023.119085

 

  1. Angajala G, Pavan P, Subashini R. Lipases: An overview of its current challenges and prospectives in the revolution of biocatalysis. Biocatal Agric Biotechnol. 2016;7:257-270. doi: 10.1016/j.bcab.2016.07.001

 

  1. Antczak MS, Kubiak A, Antczak T, Bielecki S. Enzymatic biodiesel synthesis - key factors affecting efficiency of the process. Renew Energy. 2009;34(5):1185-1194. doi: 10.1016/j.renene.2008.11.013

 

  1. Santos S, Puna J, Gomes J. A Review on bio-based catalysts (immobilized enzymes) used for biodiesel production. Energies. 2020;13:3013. doi: 10.3390/en13113013

 

  1. Basso A, Serban S. Industrial applications of immobilized enzymes-a review. Mol Catal. 2019;479:110607. doi: 10.1016/j.mcat.2019.110607

 

  1. Kovalenko G, Perminova L, Pykhtina M, Beklemishev A. Lipase-active heterogeneous biocatalysts for enzymatic synthesis of short-chain aroma esters. Biocatal Agric Biotechnol. 2021;36:102124. doi: 10.1016/j.bcab.2021.102124

 

  1. Costantini A, Califano V. Lipase immobilization in Mesoporous silica nanoparticles for biofuel production. Catalysts. 2021;11:629. doi: 10.3390/catal11050629

 

  1. Hvidsten IB, Marchetti JM. Novozym® 435 as bio-catalyst in the synthesis of methyl laurate. Energy Convers Manage X. 2021;10:100061. doi: 10.1016/j.ecmx.2020.100061

 

  1. Hoang HN, Matsuda T. Expanding substrate scope of lipase-catalyzed transesterification by the utilization of liquid carbon dioxide. Tetrahedron. 2016;72(46):7229-7234. doi: 10.1016/j.tet.2015.11.052

 

  1. Mariana A, Andreia FS, Gabriel T, Ana PM, Ana MF, João AP. Enhancing plastic waste recycling: Evaluating the impact of additives on the enzymatic polymer degradation. Catal Today. 2024;429:114492. doi: 10.1016/j.cattod.2023.114492

 

  1. Paul C, Hanefeld U, Hollmann F, Qu G, Yuan B, Sun Z. Enzyme engineering for biocatalysis. Mol Catal. 2024;555:113874. doi: 10.1016/j.mcat.2024.113874

 

  1. Morellon-Sterling R, Tavano O, Bolivar JM, et al. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. Int J Biol Macromol. 2022;210:682-702. doi: 10.1016/j.ijbiomac.2022.04.224

 

  1. Hirsh SL, Bilek MM, Nosworthy NJ, Kondyurin A, Dos Remedios CG, McKenzie DRA. Comparison of covalent immobilization and physical adsorption of a cellulase enzyme mixture. Langmuir. 2010;26:14380-14308. doi: 10.1021/la1019845

 

  1. Ali S, Khan SA, Hamayun M, Lee IJ. The recent advances in the utility of microbial lipases: A review. Microorganisms. 2023;11(2):510. doi: 10.3390/microorganisms11020510

 

  1. Nigam S, Mehrotra S, Vani B, Mehrotra R. Lipase immobilization techniques for biodiesel production: An overview. Int J Renew Energy Biofuels. 2014;2014:664708. doi: 10.5171/2014.664708

 

  1. Mandari V, Devarai SK. Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. Bioenergy Res. 2022;15(2):935-961. doi: 10.1007/s12155-021-10333-w

 

  1. Asthana N, Pal K, Ali Khan A, Malik A. Novel biopolymeric materials potential utilization for environmental practices. J Mol Struct. 2024;1311:138390. doi: 10.1016/j.molstruc.2024.138390

 

  1. Lu T, Li Z, Wang H, Gu Z, Du L. Reducing CO2 emissions and improving oil recovery through silica aerogel for heavy oil thermal production. J Clean Prod. 2023;423:138794. doi: 10.1016/j.jclepro.2023.138794

 

  1. Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev. 2023;15(5):1127-1158. doi: 10.1007/s12551-023-01146-6

 

  1. Ying S, Guan Z, Ofoegbu CP, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022;26:102336. doi: 10.1016/j.eti.2022.102336

 

  1. Liu M, Ye Y, Ye J, et al. Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications. Magnetochemistry. 2023;9(4):110. doi: 10.3390/magnetochemistry9040110

 

  1. Saire-Saire S, Garcia-Segura S, Luyo C, Andrade LH, Alarcon H. Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse. Int J Biol Macromol. 2020;148:284-291. doi: 10.1016/j.ijbiomac.2020.01.137

 

  1. Bilal M, Iqbal HMN, Adil SF, et al. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res. 2022;38:157-177. doi: 10.1016/j.jare.2021.09.013

 

  1. Mahor A, Singh P, Bharadwaj N, et al. Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology. C. 2021;7:19. doi: 10.3390/c7010019

 

  1. Sharma S, Sharma H, Sharma R. A review on functionalization and potential application spectrum of magnetic nanoparticles (MNPs) based systems. Chem Inorg Mater. 2024;2:100035. doi: 10.1016/j.cinorg.2024.100035

 

  1. Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J Nanobiotechnol. 2020;18(1):72. doi: 10.1186/s12951-020-00704-4

 

  1. Pourmadadi M, Rahmani E, Shamsabadipour A, et al. Role of iron oxide (Fe2O3) nanocomposites in advanced biomedical applications: A state-of-the-art review. Nanomaterials. 2022;12:3873. doi: 10.3390/nano12213873

 

  1. Pandit C, Banerjee S, Pandit S, et al. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon. 2023;9(4):e15475. doi: 10.1016/j.heliyon.2023.e15475

 

  1. Zhong L, Jiao Xiaobo, Hu H, et al. Activated magnetic lipase-inorganic hybrid nanoflowers: A highly active and recyclable nanobiocatalyst for biodiesel production. Renew Energy. 2021;171:825-832. doi: 10.1016/j.renene.2021.02.155

 

  1. Oliveira D, Luiz A, Francisco C, et al. Lipases immobilized onto nanomaterials as biocatalysts in biodiesel production: Scientific context, challenges, and opportunities. Rev Virtual Química. 2021;13. doi: 10.21577/1984-6835.20210019

 

  1. Fotiadou R, Patila M, Hammami MA, et al. Development of effective lipase-hybrid nanoflowers enriched with carbon and magnetic nanomaterials for biocatalytic transformations. Nanomaterials. 2019;9:808. doi: 10.3390/nano9060808

 

  1. Alnoch RC, Santos AD, Marques de Almeida J, Krieger N, Mateo C. Recent trends in biomaterials for immobilization of lipases for application in non-conventional media. Catalysts. 2020;10:697. doi: 10.3390/catal10060697

 

  1. Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in nanoparticle deposition techniques for diverse substrates: A review. Nanomaterials. 2023;13:2586. doi: 10.3390/nano13182586

 

  1. Pinto OM, Toledo RP, Barros HEDS, et al. Advances and challenges in WO3 nanostructures’ synthesis. Processes. 2024;12:2605. doi: 10.3390/pr12112605

 

  1. Fattah IMR, Ong HC, Mahlia TMI, et al. State of the Art of catalysts for biodiesel production. Front Energy Res. 2020;8:101. doi: 10.3389/fenrg.2020.00101

 

  1. Ivchenko VP, Nifant’ev IE. The chemistry of oleates and related compounds in the 2020s. RSC Green Chem. 2025;27:41. doi: 10.1039/d4gc04862h

 

  1. Vahid BR, Haghighi M. Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: Effect of fuel type on catalyst nanostructure and performance. Energy Conv Manage. 2017;134:290-300. doi: 10.1016/j.enconman.2016.12.048

 

  1. Alaei S, Haghighi M, Toghiani J, Vahid BR. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind Crops Prod. 2018;117:322-332. doi: 10.1016/j.indcrop.2018.03.015

 

  1. Widayat W, Hadiyanto H, Emma P, et al. No Access production of biodiesel from waste cooking oil using heterogeneous catalysts KI/γ-Al2O3. J Environ Eng Sci. 2020;15:107-112. doi: 10.1680/jenes.19.00012

 

  1. Farouk SM, Tayeb AM, Abdel-Hamid SMS, Osman RM. Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: A comprehensive review. Environ Sci Pollut Res. 2024;31(9):12722-12747. doi: 10.1007/s11356-024-32027-4

 

  1. Kamarullah SH, Abdul Razak ZK, Shohaimi NAM, Amal Zakariah N. Production of biodiesel from waste cooking oil usingpotassium hydroxide supported on alumina catalyst. Malays J Analyt Sci. 2021;25(4):596-604.

 

  1. Seffati K, Honarvar B, Esmaeili H, Esfandiari N. Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel. 2019;235:1238-1244. doi: 10.1016/j.fuel.2018.08.118

 

  1. Mohebbi S, Rostamizadeh M, Kahforoushan D. Technical and economic analysis of conventional and supercritical transesterification for biofuel production. Fuel. 2020;266:117063. doi: 10.1016/j.fuel.2020.117063

 

  1. Hoffmann F, Riesen R, Foreman J. Characterization of thermal stability and reaction products by means of TGA-FTIR coupling. Vol. 32. Chhattisgarh: American Laboratory; 2000. p. 13-17.

 

  1. Sarah D, Endah P, Fredina D, Budi KS, Siti A, Muhammad I. Analysis of optimum temperature and calcination time in the production of CaO using seashells waste as CaCO3 source. J Ecol Eng. 2021;5:221-228. doi: 10.12911/22998993/135316

 

  1. Yuling W, Xiaoli W, Wen S, et al. A catalyst with the better catalytic activity for NO reduction showed bigger reduction capacity and limiting current. Sci Total Environ. 2019;701:135036. doi: 10.1016/j.scitotenv.2019.135036

 

  1. Peng-Lim B, Pragas MG, Shafida H. Evaluation of safety of excessive intake and efficacy of long-term intake of beverages containing apple polyphenols. J Oleo Sci. 2009;59:321-338. doi: 10.5650/jos.58.499

 

  1. Hu S, Wang Y, Han H. Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioenergy. 2011;35(8):3627-3635. doi: 10.1016/j.biombioe.2011.05.009

 

  1. Florin NH, Harris AT. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem Eng Sci. 2009;64:187-191. doi: 10.1016/j.ces.2008.10.021

 

  1. Kalinkin AM, Kalinkina EV, Zalkind OA, Makarova TI. Chemical interaction of calcium oxide and calcium hydroxide with CO2 during mechanical activation. Inorg Mater. 2005;41(10):1073-1079. doi: 10.1007/s10789-005-0263-1

 

  1. Zik NAFA, Sarina S, Parveen J. Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor. Renew Energy. 2020;3:155. doi: 10.1016/j.renene.2020.03.144

 

  1. Osman IA, Ayati A, Krivoshapkin P, et al. Coordination-driven innovations in low-energy catalytic processes: Advancing sustainability in chemical production. Coord Chem Rev. 2024;514:215900. doi: 10.1016/j.ccr.2024.215900

 

  1. Peeters PE, Makshina EV, Parvulescu VI, Sels BF. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev. 2019;48:2366-2421. doi: 10.1039/C8CS00452H

 

  1. Yung C, Gon S. High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresour Technol. 2010;101(11):8515-8519. doi: 10.1016/j.biortech.2010.06.082

 

  1. Jairam S, Kolar P, Sharma-Shivappa R, Osborne JA, Davis JA. KI-impregnated oyster shell as a solid catalyst for soybean oil transesterification. Bioresour Technol. 2012;104:329-335. doi: 10.1016/j.biortech.2011.10.039

 

  1. Amal R, Usman M. A review of breakthroughs in biodiesel production with transition and non-transition metal-doped CaO nano-catalysts. Biomass Bioenergy. 2024;184:107158. doi: 10.1016/j.biombioe.2024.107158

 

  1. Joshi G, Rawat DS, Lamba BY, et al. Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Conv Manage. 2015;96(5):258-267. doi: 10.1016/j.enconman.2015.02.061

 

  1. Vasić K, Hojnik Podrepšek G, Knez Z, Leitgeb M. Biodiesel production using solid acid catalysts based on metal oxides. Catalysts. 2020;10:237. doi: 10.3390/catal10020237

 

  1. Nasar M, Hwa TS, Lokman IM, Yun H. Synthesis and application of waste egg shell derived CaO supported W-Mo mixed oxide catalysts for FAME production from waste cooking oil: Effect of stoichiometry. Energy Conv Manage. 2017;151(8):216-226. doi: 10.1016/j.enconman.2017.08.069

 

  1. Shankar V, Jambulingam R. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel. Sustain Environ Res. 2017;27(7):273-278. doi: 10.1016/j.serj.2017.06.006

 

  1. Rúbia R, Pedro F, Sara M, Isabel F, Joaquim V. Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Appl Catal A Gen. 2018;567(9):56-64. doi: 10.1016/j.apcata.2018.09.003

 

  1. Hoora M, HwaiChyuan O, Masjuki HH, et al. Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell. Energy. 2017;144(11):10-19. doi: 10.1016/j.energy.2017.11.073

 

  1. Niju S, Meera KM, Begum S, Anantharaman N. Modification of egg shell and its application in biodiesel production. J Saudi Chem Soc. 2014;18(2):702-706. doi: 10.1016/j.jscs.2014.02.010

 

  1. Sun Y, Sage V, Sun Z. An enhanced process of using direct fluidized bed calcination of shrimp shell for biodiesel catalyst preparation. Chem Eng Res Design. 2017;126:142-152. doi: 10.1016/j.cherd.2017.08.010

 

  1. Johari M, Aminah S, Farid AM, et al. Optimization and kinetic studies for biodiesel production from dairy waste scum oil via microwave assisted transesterification. Environ Technol Innov. 2024;34(2):103580. doi: 10.1016/j.eti.2024.103580

 

  1. Laskar IB, Rajkumari K, Gupta R, Chatterjee S, Paul B, Rokhum SL. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 2018;8:20131-20142. doi: 10.1039/C8RA02397B

 

  1. Rashid IM, Atiya MA, Hameed BH. Production of biodiesel from waste cooking oil using cao-egg shell waste derived heterogeneous catalyst. Int J Sci Res (IJSR). 2017;6(11):94-103. doi: 10.21275/art20177723

 

  1. Sirisomboonchai S, Abuduwayiti M, Guan G, et al. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conv Manage. 2015;95(5):242-247. doi: 10.1016/j.enconman.2015.02.044

 

  1. Rezaei R, Mohadesi M, Moradi GR. Optimization of biodiesel production using waste mussel shell catalyst. Fuel. 2013;109(7):534-541. doi: 10.1016/j.fuel.2013.03.004

 

  1. Niju S, Begum KMMS, Anantharaman N. Preparation of biodiesel from waste frying oil using a green and renewable solid catalyst derived from egg shell. Environ Prog Sustain Energy. 2014;34(1):248-254. doi: 10.1002/ep.11939

 

  1. Gaide I, Makareviciene V, Sendzikiene E. Effectiveness of eggshells as natural heterogeneous catalysts for transesterification of rapeseed oil with methanol. Catalysts. 2022;12:246. doi: 10.3390/catal12030246

 

  1. Rahman WU, Fatima A, Anwer AH, et al. Biodiesel synthesis from eucalyptus oil by utilizing waste egg shell derived calcium based metal oxide catalyst. Process Saf Environ Protect. 2018;122(12):313-319. doi: 10.1016/j.psep.2018.12.015

 

  1. Boro J, Thakur AJ, Deka D. Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process Technol. 2011;92(10):2061-2067. doi: 10.1016/j.fuproc.2011.06.008

 

  1. Boonyuen S, Smith SM, Malaithong M, Prokaew A, Cherdhirunkorn B, Luengnaruemitchai A. Biodiesel production by a renewable catalyst from calcined Turbo jourdani (Gastropoda: Turbinidae) shells. J Clean Prod. 2017;10:177. doi: 10.1016/j.jclepro.2017.10.137

 

  1. Jayakumar M, Natchimuthu K, Marttin G, et al. Heterogeneous base catalysts: Synthesis and application for biodiesel production - a review. Bioresour Technol. 2021;331:125054. doi: 10.1016/j.biortech.2021.125054

 

  1. Ao S, Changmai B, Vanlalveni C, et al. Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges. Renew Energy. 2024;223:120031. doi: 10.1016/j.renene.2024.120031

 

  1. Boey PL, Maniam GP, Hamid SA, Hag Ali DM. Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology. Fuel. 2011;90(7):2353-2358. doi: 10.1016/j.fuel.2011.03.002

 

  1. Pokhrel S. Hydroxyapatite: Preparation, properties and its biomedical applications. Adv Chem Eng Sci. 2018;8:225-240. doi: 10.4236/aces.2018.84016

 

  1. Ibrahim M, Labaki M, Giraudon J, Hydroxyapatite JL. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. J Hazard Mater. 2020;383:121139. doi: 10.1016/j.jhazmat.2019.121139

 

  1. Anandan D, Kumar A, Kumar Jaiswal A. Comparative study of hydroxyapatite synthesized using Schiff base and wet chemical precipitation methods. J Mech Behav Biomed Mater. 2023;148:106200. doi: 10.1016/j.jmbbm.2023.106200

 

  1. Granito RN, Muniz Renno AC, Yamamura H, De Almeida MC, Menin Ruiz PL, Ribeiro DA. Hydroxyapatite from fish for bone tissue engineering: A promising approach. Int J Mol Cell Med. 2018;7(2):80-90. doi: 10.22088/ijmcm.bums.7.2.80

 

  1. Sutapa IW, Rosmawaty, Bandjar A. Synthesis Ca3(PO4)2 from tuna fish bone and potential as a catalyst in the transesterification reaction for biodiesel production. J Chem Pharm Res. 2016;8(8):596-604.

 

  1. Sarah B, Tien-Chien J, Mohamed B. Synthesis of beta-tricalcium phosphate catalyst from herring fishbone for the transesterification of parsley seed oil. Environ Technol. 2021;43(4):1-37. doi: 10.1080/09593330.2021.1916094

 

  1. Bitire SO, Jen TC, Belaid M. Yield response from the catalytic conversion of parsley seed oil into biodiesel using a heterogeneous and homogeneous catalyst. ACS Omega. 2021;6(39):25124-25137. doi: 10.1021/acsomega.1c01855

 

  1. Ni Y, Han Z, Chai Y, Wu G, Li L. Catalytic hydrogen storage in liquid hydrogen carriers. EES Catal. 2023;1:459-494. doi: 10.1039/d3ey00076a

 

  1. Farooq M, Ramli A, Naeem A. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew Energy. 2015;76:362-368. doi: 10.1016/j.renene.2014.11.042

 

  1. Marzbali MH, Hakeem IG, Ngo T, et al. A critical review on emerging industrial applications of chars from thermal treatment of biosolids. J Environ Manage. 2024;369:122341. doi: 10.1016/j.jenvman.2024.122341

 

  1. Nisar J, Razaq R, Farooq M, et al. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew Energy. 2016;101:111-119. doi: 10.1016/j.renene.2016.08.048

 

  1. Chen G, Shan R, Shi J, Liu C, Yan B. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Convers Manage. 2015;98:463-469. doi: 10.1016/j.enconman.2015.04.012

 

  1. Olajide M, Yemisi A, Simeon O, Salihu A. Catalytic performance for transesterification reaction using waste cooking oils over nano-calcium oxide (n-CaO) catalyst from different waste bones. Iraqi J Nanotechnol. 2022;3:20-34. doi: 10.47758/ijn.vi3.54

 

  1. Masango SB, Ngema PT, Olagunju OA, Ramsuroop S. The effect of reaction temperature, catalyst concentration and alcohol ratio in the production of biodiesel from raw and purified castor oil. Adv Chem Eng Sci. 2024;14:137-154. doi: 10.4236/aces.2024.143009

 

  1. Singh V, Sharma YC. Low cost guinea fowl bone derived recyclable heterogeneous catalyst for microwave assisted transesterification of Annona squamosa L. Seed oil. Energy Convers Manage. 2017;138:627-637. doi: 10.1016/j.enconman.2017.02.037

 

  1. Khan HM, Iqbal T, Haider Ali C, Javaid A, Cheema II. Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel. 2020;277:118091. doi: 10.1016/j.fuel.2020.118091

 

  1. Shen J, Liu Y, Wang X, et al. A comprehensive review of health-benefiting components in rapeseed oil. Nutrients. 2023;15:999. doi: 10.3390/nu15040999

 

  1. Asir O, Gnanadurai S, Samuel K, Kenthorai J, Alagunambi R. Biodiesel production from Palm oil using calcined waste animal bone as catalyst. Bioresour Technol. 2012;116(4):512-516. doi: 10.1016/j.biortech.2012.03.112

 

  1. Widiarti N, Wijianto W, Wijayati N, et al. Catalytic activity of calcium oxide from fishbone waste in waste cooking oil transesterification process. J Bahan Alam Terbarukan. 2017;6:97-106. doi: 10.15294/jbat.v6i2.8335

 

  1. Hari TK, Yaakob Z. Effect of calcination temperature on the application of sodium zirconate solid base catalyst for biodiesel production from Jatropha curcas oil. Int J Green Energy. 2017;14:1163-1171. doi: 10.1080/15435075.2016.1253573

 

  1. Manojkumar N, Muthukumaran C, Sharmila G. A comprehensive review on the application of response surface methodology for optimization of biodiesel production using different oil sources. J King Saud Univ Eng Sci. 2022;34(3):198-208. doi: 10.1016/j.jksues.2020.09.012

 

  1. Corro G, Sánchez N, Pal U, Bañuelos F. Biodiesel production from waste frying oil using waste animal bone and solar heat. Waste Manag. 2015;47:105-113. doi: 10.1016/j.wasman.2015.02.001

 

  1. Muliadi R, Saiful J, Febriani F, et al. Calcined aceh bovine bone (Bos indicus) intercalated lithium as an inorganic base catalyst for transesterification of castor oil. Aceh Int J Sci Technol. 2020;9:21-28. doi: 10.13170/aijst.9.1.16622

 

  1. Fadarina F, Toni F, Junaidi N, et al. Conference: 5th First t1 t2 2021 International Conference; 2022. doi: 10.2991/ahe.k.220205.069

 

  1. Sulaiman S, Amin MH. Fish bone-catalyzed methanolysis of waste cooking oil. Bull Chem React Eng Catal. 2016;11:245-249. doi: 10.9767/bcrec.11.2.556.245-249

 

  1. Odzijewicz JI, Wołejko E, Wydro U, Wasil M, Nska- Trypuc J. Utilization of ashes from biomass combustion. Energies. 2023;15:9653. doi: 10.3390/en15249653

 

  1. Wang W, Lemaire R, Bensakhria A, Luart D. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J Anal Appl Pyrolysis. 2022;163:105479. doi: 10.1016/j.jaap.2022.105479

 

  1. Sharma M, Khan AA, Puri SK, Tuli DK. Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass Bioenergy. 2012;41(6):94-106. doi: 10.1016/j.biombioe.2012.02.017

 

  1. Eldiehy KSH, Daimary N, Borah D, et al. Towards biodiesel sustainability: Waste sweet potato leaves as a green heterogeneous catalyst for biodiesel production using microalgal oil and waste cooking oil. Ind Crops Prod. 2022;187:115467. doi: 10.1016/j.indcrop.2022.115467

 

  1. Kumar S, Deswal V. Optimization at low temperature transesterification biodiesel production from soybean oil methanolysis via response surface methodology. Environ Effects. 2019;44:2284-2293. doi: 10.1080/15567036.2019.1649331

 

  1. Anand R, Maheswari R, Hanefeld U. Catalytic properties of the novel mesoporous aluminosilicate AlTUD-1. J Catal. 2006;242:82-91. doi: 10.1016/j.jcat.2006.05.022

 

  1. Saetiao P, Kongrit N, Jitjamnong J, Direksil C, Cheng PCK, Khantikulanon N. Enhancing sustainable production of fatty acid methyl ester from palm oil using bio-based heterogeneous catalyst: Process simulation and techno-economic analysis. CS Omega. 2023;8(33):30598-30611. doi: 10.1021/acsomega.3c04209

 

  1. Khan HM, Iqbal T, Mujtaba MA, Soudagar MEM, Veza I, Fattah IMR. Microwave assisted biodiesel production using heterogeneous catalysts. Energies. 2021;14:8135. doi: 10.3390/en14238135

 

  1. Kordi M, Farrokhi N, Martin I, Canul P, Ahmadikhah A. Rice husk at a Glance: From agro-industrial to modern applications. Rice Sci. 2024;31(1):14-32. doi: 10.1016/j.rsci.2023.08.005

 

  1. Yuan S, Hou Y, Liu S, Ma Y. A comparative study on rice husk, as agricultural waste, in the production of silica nanoparticles via different methods. Materials. 2024;17:1271. doi: 10.3390/ma17061271

 

  1. Miyuranga KA, Thilakarathne D, Arachchige US, Jayasinghe RA, Weerasekara NA. Catalysts for biodiesel production: A review. Asian J Chem. 2021;33(8):1985-1999. doi: 10.14233/ajchem.2021.23332

 

  1. Li C, Hu X, Feng W, Wu B, Wu K. A supported solid base catalyst synthesized from green biomass ash for biodiesel production. Util Environ Eff. 2017;40:142-147. doi: 10.1080/15567036.2017.1405121

 

  1. Dhawane SH, Kumar T, Halder G. Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Conv Manag. 2018;167:176-202. doi: 10.1016/j.enconman.2018.04.073

 

  1. Chen C, Liu J, Yao J, Qi Y, Yan B. Biodiesel production from waste cooking oil in a magnetically fluidized bed reactor using whole-cell biocatalysts. Energy Conv Manag. 2017;138(4):556-564. doi: 10.1016/j.enconman.2017.02.036

 

  1. Nabora CS, Kingondu CK, Kivevele TT. Tamarindus indica fruit shell ash: A low cost and effective catalyst for biodiesel production from Parinari curatellifolia seeds oil. SN Appl Sci. 2019;1:253. doi: 10.1007/s42452-019-0256-3

 

  1. Gnanasekaran S, Nordin NA, Hamidi NM, Shariffuddin JH. Effect of alkaline treatment on the characteristics of pineapple leaves fibre and PALF/PP biocomposite. J Mech Eng Sci. 2021;15:8518-8528. doi: 10.15282/jmes.15.4.2021.05.0671

 

  1. Mares EK, Gonçalves MA, Da Luz PT, Filho GN, Zamian JR, Conceição LR. Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis: Optimization of the biodiesel production process. Fuel. 2021;299:120887. doi: 10.1016/j.fuel.2021.120887

 

  1. Mutalib AA, Ibrahim ML, Matmin J, et al. SiO2-rich sugar cane bagasse ash catalyst for transesterification of palm oil. BioEnergy Res. 2020;13:986-997. doi: 10.1007/s12155-020-10119-6

 

  1. Wang Y, Zhang M, Ding X. Biodiesel production from soybean oil using modified calcium loaded on rice husk activated carbon as a low-cost basic catalyst. Sep Sci Technol. 2017;53:807-813. doi: 10.1080/01496395.2017.1374411

 

  1. Roschat W, Siritanon T, Yoosuk B, Promarak V. Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production. Energy Conv Manag. 2016;119:453-462. doi: 10.1016/j.enconman.2016.04.071

 

  1. Karydogianni S, Roussis L, Kakabouki L, et al. Seed oil content, oil yield and fatty acids composition of black mustard [Brassica nigra (L.) Koch] in response to fertilization and plant density. Notulae Botanicae Horti Agrobotanici Cluj Napoca. 2023;51:13061. doi: 10.15835/nbha51113061

 

  1. Perveen R, Butt MS, Anjum FM, Ahmad S, El-Ghorab AD. Improvement in stability and frying behavior of sesame (Sesamum indicum) oil; Blending with sunflower oil. Aljouf Sci Eng J. 2014;1:15-22. doi: 10.12816/0011027

 

  1. Miladinović MR, Zdujić MV, Veljović DN, et al. Valorization of walnut shell ash as a catalyst for biodiesel production. Renew Energy. 2020;147:1033-1043. doi: 10.1016/j.renene.2019.09.056

 

  1. Tudin DZ, Rizalman AN, Asrah H. Performance of palm oil fuel ash and rice husk ash based geopolymer mortar. E3S Web Conf. 2018;65:02011. doi: 10.1051/e3sconf/20186502011

 

  1. Farida S, Jenie RI, Fakhrudin N. Calophyllum inophyllum: A comprehensive analysis of its ethnobotanical, phytochemical, and pharmacological properties. Majalah Obat Tradit. 2024;29:121. doi: 10.22146/mot.87488

 

  1. Basumatary S, Nath B, Das B, Kalita P, Basumatary B. Utilization of renewable and sustainable basic heterogeneous catalyst from Heteropanax fragrans (Kesseru) for effective synthesis of biodiesel from Jatropha curcas oil. Fuel. 2021;286:119357. doi: 10.1016/j.fuel.2020.119357

 

  1. Zafar M, Imran SM, Iqbal I, et al. Graphene-based polymer nanocomposites for energy applications: Recent advancements and future prospects. Results Physics. 2024;64:107655. doi: 10.1016/j.rinp.2024.107655

 

  1. Amalina F, Razak AS, Krishnan S, Sulaiman H, Zularisam AW, Nasrullah M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications - a review. J Hazard Mater Adv. 2022;7:100134.doi: 10.1016/j.hazadv.2022.100134

 

  1. Amalina F, Razak ASA, Krishnan S, Zularisam AW, Nasrullah M. A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability - a review. Clean Mater. 2022;3:100045. doi: 10.1016/j.clema.2022.100045

 

  1. Wang X, Liu R, Waje MM, et al. Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst pingyun. Chem Mater. 2007;19:2395-2397. doi: 10.1021/cm070278r

 

  1. Saikia K, Ngaosuwan K, Assabumrungrat S, et al. Sulphonated cellulose-based carbon as a green heterogeneous catalyst for biodiesel production: Process optimization and kinetic studies. Biomass Bioenergy. 2023;173:106799. doi: 10.1016/j.biombioe.2023.106799

 

  1. Mardhiah HH, Ong HC, Masjuki HH, Lim S, Pang YL. Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conv Manag. 2017;144:10-17. doi: 10.1016/j.enconman.2017.04.038

 

  1. Feng W, Tie X, Duan X, et al. Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel. Arab J Chem. 2023;16(7):104814. doi: 10.1016/j.arabjc.2023.104814

 

  1. Cheng F, Li X. Preparation and application of biochar-based catalysts for biofuel production. Catalysts. 2018;8:346. doi: 10.3390/catal8090346

 

  1. Kumar S, Soomro SA, Harijan K, Uqaili MA, Kumar L. Advancements of biochar-based catalyst for improved production of biodiesel: A comprehensive review. Energies. 2023;16:644. doi: 10.3390/en16020644

 

  1. Widayat W, Fernanda AA, Silvie ES. Palm kernel shell biochar catalyst for biodiesel production from waste cooking oil. IOP Conf Ser Mater Sci Eng. 2021;1053:012064. doi: 10.1088/1757-899X/1053/1/012064

 

  1. Testa ML, Parola VL. Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: A minireview. Catalysts. 2021;11:1143. doi: 10.3390/catal11101143

 

  1. Li M, Chen D, Zhu X. Preparation of solid acid catalyst from rice husk char and its catalytic performance in esterification. Chin J Catal. 2013;34:1674-1682. doi: 10.1016/S1872-2067(12)60634-2

 

  1. Zhou J, Zhao J, Yang F, et al. Leaching kinetics of potassium and aluminum from phosphorus-potassium associated ore in HCl-CaF2 system. Sep Purif Technol. 2020;253:117528.doi: 10.1016/j.seppur.2020.117528

 

  1. Saputra E, Utama PS, Azis Y, et al. Geopolymer catalysts derived from palm oil mill ash for biodiesel production from Calophyllum inophyllum oil. Appl Nanosci. 2022;12:1-11. doi: 10.1007/s13204-021-02180-0

 

  1. Galai H, Pijolat M, Nahdi K, Trabelsi-Ayadi M. Mechanism of growth of MgO and CaCO3 during a dolomite partial decomposition. Solid State Ionics. 2007;178:1039-1047. doi: 10.1016/j.ssi.2007.05.013

 

  1. Santos RC, Vieira RB, Valentini A. Optimization study in biodiesel production via response surface methodology using dolomite as a heterogeneous catalyst. J Catal. 2014;2014:1-11. doi: 10.1155/2014/213607

 

  1. Mohammed MAA, Shafizah IN, Salmiaton A, Azlina WAKG, Taufiq-Yap YH. The evaluation on three types of Malaysian dolomites as a primary catalyst in gasification reaction of EFB and tar cracking efficiency. Front Energy Res. 2020;8:38. doi: 10.3389/fenrg.2020.00038

 

  1. Pesonen J, Myllymäki P, Tuomikoski S, et al. Use of calcined dolomite as chemical precipitant in the simultaneous removal of ammonium and phosphate from synthetic wastewater and from agricultural sludge. ChemEngineering. 2019;3:40. doi: 10.3390/chemengineering3020040

 

  1. Yoosuk B, Udomsap P, Puttasawat B. Hydration-dehydration technique for property and activity improvement of calcined natural dolomite in heterogeneous biodiesel production: Structural transformation aspect. Appl Catal A Gen. 2011;395:87-94. doi: 10.1016/j.apcata.2011.01.026

 

  1. Chen C, Zhong H, Wang X, et al. Thermodynamic and kinetic studies of dolomite formation: A review. Minerals. 2023;13:1479.doi: 10.3390/min13121479

 

  1. Melchiorre M, Cucciolito ME, Di Serio M, et al. Homogeneous catalysis and heterogeneous recycling: A simple Zn(II) catalyst for green fatty acid esterification. ACS Sustain Chem Eng. 2021;9(17):6001-6011. doi: 10.1021/acssuschemeng.1c01140

 

  1. López DE, Goodwin JG Jr., Bruce DA. Transesterification of triacetin with methanol on nafion® acid resins. J Catal. 2007;245:381-391. doi: 10.1016/j.jcat.2006.10.027

 

  1. Munoz RAA, Fernandes DM, Santos DQ, Barbosa TG, Sousa RMF. Biodiesel: Production, Characterization, Metallic Corrosion and Analytical Methods for Contaminants. London: IntechOpen; 2012. p. 6. doi: 10.5772/53655

 

  1. Hutchings GJ, Védrine JC. Springer Series in Chemical Physics. Vol. 75. 2004. p. 215-258.doi: 10.1007/978-3-662-05981-4_6

 

  1. Rozina Ahmad M, Elnaggar AY, et al. Sustainable and eco-friendly synthesis of biodiesel from novel and non-edible seed oil of Monotheca buxifolia using green nano-catalyst of calcium oxide. Energy Conv Manag X. 2022;13:100142. doi: 10.1016/j.ecmx.2021.100142

 

  1. Nyepetsi M, Mbaiwa F, Oyetunji OA, Dzade NY, De Leeuw NH. The carbonate-catalyzed transesterification of sunflower oil for biodiesel production: In situ monitoring and density functional theory calculations. South Afr J Chem. 2020;74:42-49. doi: 10.17159/0379-4350/2021/v74a8

 

  1. Dossin TF, Reyniers MF, Marin GB. Kinetics of heterogeneously MgO-catalyzed transesterification. Appl Catal B Environ. 2006;62:35-45. doi: 10.1016/j.apcatb.2005.04.005

 

  1. Kawashima A, Matsubara K, Honda K. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresour Technol. 2008;100:696-700. doi: 10.1016/j.biortech.2008.06.049

 

  1. Sisca V, Zilfa S, Jamarun N. Biodiesel production from waste cooking oil using catalyst calcium oxide derived of limestone Lintau Buo. Arch Pharma Pract. 2019;11(3):8-14.

 

  1. Cai J, Wei L, Wang J, et al. Application of catalysts in the conversion of biomass and its derivatives. Catalysts. 2024;14:499. doi: 10.3390/catal14080499

 

  1. Pinto BF, Garcia MA, Costa JC, et al. Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: Screening of substrates for biodiesel production. Fuel. 2019;239:290-296. doi: 10.1016/j.fuel.2018.11.025

 

  1. Torshizi HO, Vahid S, Mirzaei AA. Effect of calcination conditions on the structure and catalytic performance of MgO supported Fe-Co-Ni catalyst for CO hydrogenation. J Nat Gas Sci Eng. 2014;17:110-118. doi: 10.1016/j.jngse.2013.12.009

 

  1. Al-Fatesh ASA, Fakeeha AH. Effects of calcination and activation temperature on dry reforming catalysts. J Saudi Chem Soc. 2012;16(1):55-61. doi: 10.1016/j.jscs.2010.10.020

 

  1. Jiang S, You Z, Tang N. Effects of calcination temperature and calcination atmosphere on the performance of Co3O4 catalysts for the catalytic oxidation of toluene. Processes. 2023;11:2087. doi: 10.3390/pr11072087

 

  1. Anaya-Zavaleta JC, Ledezma-Pérez AS, Gallardo- Vega C, et al. ZnO nanoparticles by hydrothermal method: Synthesis and characterization. Technologies. 2025;13:18. doi: 10.3390/technologies13010018

 

  1. Balajii M, Niju S. Banana peduncle - a green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renew Energy. 2020;146:2255-2269. doi: 10.1016/j.renene.2019.08.062

 

  1. Oladipo B, Ojumu TV, Latinwo LM, Betiku E. Pawpaw (Carica papaya) peel waste as a novel green heterogeneous catalyst for Moringa oil methyl esters synthesis: Process optimization and kinetic study. Energies. 2020;13(21):5834. doi: 10.3390/en13215834

 

  1. Falowo OA, Oladipo B, Taiwo AE, Olaiya TA, Oyekola O, Betiku EF. Green Heterogeneous Base Catalyst from Ripe-Unripe Plantain Peels for the Transesterification of Waste Cooking Oil. Durham: Research Square; 2021. p. 12. doi: 10.21203/rs.3.rs-1136793/v1

 

  1. Gohain M, Laskar K, Phukon H, Bora U, Kalita D, Deka D. Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves. Waste Manag. 2020;102:212-221. doi: 10.1016/j.wasman.2019.10.049

 

  1. Daimary N, Eldiehy KSH, Boruah P, Deka D, Bora U, Kakati BK. Potato peels as a sustainable source for biochar, bio-oil and a green heterogeneous catalyst for biodiesel production. J Environ Chem Eng. 2021;12(10):107108. doi: 10.1016/j.jece.2021.107108

 

  1. Niju S, Janaranjani A, Nanthini R, Sindhu PA, Balajii1 M. Valorization of banana pseudostem as a catalyst for transesterification process and its optimization studies. Biomass Conv Biorefin. 2021;13(2):1805-1818. doi: 10.1007/s13399-021-01343-x

 

  1. Changmai B, Rano R, Vanlalveni C, Rokhum SL. A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production. Fuel. 2021;286:119447. doi: 10.1016/j.fuel.2020.119447

 

  1. Aleman-Ramirez JL, Moreira J, Torres-Arellano S, Longoria A, Okoye PU, Sebastian PJ. Preparation of a heterogeneous catalyst from Moringa leaves as a sustainable precursor for biodiesel production. Fuel. 2020;284(10):118983. doi: 10.1016/j.fuel.2020.118983

 

  1. Nath B, Kalita P, Das B, Basumatary S. Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel. Renew Energy. 2020;151:295-310. doi: 10.1016/j.renene.2019.11.029

 

  1. Basumatary B, Nath B, Das B, Dhar A, Basumatary S. Biomass (Amritsagar) derived efficient solid base catalyst for eco-friendly biodiesel synthesis: A study on synthesis, reaction kinetics, and thermodynamic properties. Next Sustain. 2025;6:100127. doi: 10.1016/j.nxsust.2025.100127

 

  1. Ekins P, Zenghelis D. The costs and benefits of environmental sustainability. Sustain Sci. 2021;16:949-965. doi: 10.1007/s11625-021-00910-5

 

  1. Meng L, Kordestany A, Maini B, Dong M. Experimental study of diffusion of vaporized solvent in bitumen at elevated temperatures. Fuel. 2020;280:118595. doi: 10.1016/j.fuel.2020.118595

 

  1. Geetha VT, Selvakumar C, Shravan Kumar S, Gopinath S, Ragupathi C, Rajendiran A. Effect of morphological and particle size, structure on the physical properties of Sr doped cobalt chromite for catalysis application. Chem Inorg Mater. 2024;3:100058. doi: 10.1016/j.cinorg.2024.100058

 

  1. Reghunath S, Pinheiro D, Sunaja Devi KR. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl Surf Sci Adv. 2021;3:100063. doi: 10.1016/j.apsadv.2021.100063

 

  1. Veriansyah B, Kim JD, Kim BK, Shin YH, Woo Y, Kim J. Continuous synthesis of surface-modified zinc oxide nanoparticles in supercritical methanol. J Supercrit Fluid. 2010;52:76-83. doi: 10.1016/j.supflu.2009.11.010

 

  1. Ingle AP, Chandel AK, Philippini R, Martiniano SE, Da Silva SS. Advances in nanocatalysts mediated biodiesel production: A critical appraisal. Symmetry. 2020;12:256. doi: 10.3390/sym12020256

 

  1. Ruiz-Jorge F, Portela JR, Sánchez-Oneto J, Martínez De La Ossa EJ. Synthesis of micro- and nanoparticles in sub- and supercritical water: From the laboratory to larger scales. Appl Sci. 2020;10:5508. doi: 10.3390/app10165508

 

  1. Munnik P, De Jongh PE, De Jong KP. Recent developments in the synthesis of supported catalysts. Chem Rev. 2015;115(14):6687-6718. doi: 10.1021/cr500486u

 

  1. Liu X, Khinast JG, Glasser BJ. A parametric investigation of impregnation and drying of supported catalysts. Chem Eng Sci. 2008;63:4517-4530. doi: 10.1016/j.ces.2008.06.013

 

  1. Zhang Y, Chen Z, Zhang Y, Su Y, Riffat S. Parameter control in synthesis of Vermiculite-CaCl2 composite materials for thermochemical adsorption heat storage. Energy. 2024;291:130478. doi: 10.1016/j.energy.2024.130478

 

  1. Dönmez O, Dükkancı M, Gündüz G. Effects of catalyst preparation method and reaction parameters on the ultrasound assisted photocatalytic oxidation of reactive yellow 84 dye. J Environ Health Sci Eng. 2020;18(2):835-851. doi: 10.1007/s40201-020-00507-7

 

  1. Adisa H, Emina T, Amra B, Amra O, Indira Š. Impact of solvent and temperature on solubility and viscosity of expanded polystyrene. In: International Students GREEN Conference; 2021. p. 32-38.

 

  1. Pundienė I, Pranckevičienė J, Zhu C, Kligys M. The role of temperature and activator solution molarity on the viscosity and hard structure formation of geopolymer pastes. Constr Build Mater. 2020;272:121661. doi: 10.1016/j.conbuildmat.2020.121661

 

  1. Wen L, Wang Y, Lu D, Hu S, Han H. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel. 2010;89:2267-2271. doi: 10.1016/j.fuel.2010.01.028

 

  1. Kumar B, Ramesh K, Sivakumar P, Vishnupriya M. KF/ CaO nanocatalyst for the production of biodiesel from animal fat through single-step process. Int J Appl Eng Res. 2021;10(61):422.

 

  1. Martín-Martín JA, Sánchez-Robles J, González-Marcos MP, Aranzabal A, González-Velasco JR. Effect of preparation procedure and composition of catalysts based on Mn and Ce oxides in the simultaneous removal of NOX and o-DCB. Mol Catal. 2020;495:111152. doi: 10.1016/j.mcat.2020.111152

 

  1. Borlaf M, Moreno R. Colloidal sol-gel: A powerful low-temperature aqueous synthesis route of nanosized powders and suspensions. Open Ceram. 2021;8:100200. doi: 10.1016/j.oceram.2021.100200

 

  1. Schubert U. Chemistry and Fundamentals of the Sol-Gel Process. Weinheim: VCH-Wiley Verlag GmbH; 2015. doi: 10.1002/9783527670819.ch01

 

  1. Coradin T. Sol-Gel Process, Structure, and Properties. Cham: Springer; 2022. doi: 10.1007/978-3-030-23217-7_141

 

  1. Bokov D, Jalil AT, Chupradit S, et al. Nanomaterial by sol-gel method: Synthesis and application. Adv Mater Sci Eng. 2021;2021:5102014. doi: 10.1155/2021/5102014

 

  1. Sharm M, Pathak M, Kapoor PN. The sol-gel method: Pathway to ultrapure and homogeneous mixed metal oxide nanoparticles. Asian J Chem. 2018;30:1405-1412. doi: 10.14233/ajchem.2018.20845

 

  1. Ciesielczyk F, Przybysz M, Zdarta J, Piasecki A, Paukszta D, Jesionowski T. The sol-gel approach as a method of synthesis of xMgO·ySiO2 powder with defined physicochemical properties including crystalline structure. J Sol Gel Sci Technol. 2014;71:501-513. doi: 10.1007/s10971-014-3398-1

 

  1. Danks AE, Hall SR, Schnepp Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater Horiz. 2016;3:91-112. doi: 10.1039/C5MH00260E

 

  1. Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E. Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels. 2021;7(4):275. doi: 10.3390/gels7040275

 

  1. Rahman IA, Padavettan V. Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review. J Nanomater. 2012;2012:132424. doi: 10.1155/2012/132424

 

  1. Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. A new co-solvent method for the green production of biodiesel fuel - optimization and practical application. Fuel. 2013;103:742-748. doi: 10.1016/j.fuel.2012.09.029

 

  1. Pan H, Li H, Zhang H, et al. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based brønsted-lewis solid acid and co-solvent. Energy Conv Manag. 2018;166:534-544. doi: 10.1016/j.enconman.2018.04.061

 

  1. Lau PC, Kwong TL, Yung KF. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol. Sci Rep. 2016;6:23822. doi: 10.1038/srep23822

 

  1. Tan YH, Abdullah MO, Hipolito CN. Comparison of biodiesel production between homogeneous and heterogeneous base catalysts. Appl Mech Mater. 2016;833:71-77. doi: 10.4028/www.scientific.net/AMM.833.71

 

  1. Biernat K, Matuszewska A, Samson-Bręk I, Owczuk M. Biological methods in biodiesel production and their environmental impact. Appl Sci. 2021;11:10946. doi: 10.3390/app112210946

 

  1. Zhang Y, Li W, Wang J, et al. Advancement in utilization of magnetic catalysts for production of sustainable biofuels. Front Chem. 2023;10:1106426. doi: 10.3389/fchem.2022.1106426

 

  1. Abdallah S, Wagih E, Sadik A, Olfat M, Mosaad S, Kasaby A. Maximizing biodiesel production from high free fatty acids feedstocks through glycerolysis treatment. Biomass Bioenergy. 2021;146:105997. doi: 10.1016/j.biombioe.2021.105997

 

  1. Saleh HM, Hassan AI. Use of heterogeneous catalysis in sustainable biofuel production. Phys Sci Rev. 2023;8(11):3813-3834. doi: 10.1515/psr-2022-0041

 

  1. Kundu D, Samanta P, Bhowmick S, et al. Heterogeneous catalysts for sustainable biofuel production: A paradigm shift towards renewable energy. Biocatal Agric Biotechnol. 2024;62:103432. doi: 10.1016/j.bcab.2024.103432

 

  1. Dimian AC, Rothenberg G. An effective modular process for biodiesel manufacturing using heterogeneous catalysis. Catal Sci Technol. 2016;6:6097-6108. doi: 10.1039/C6CY00426A

 

  1. Tavizón-Pozos JA, Chavez-Esquivel G, Suárez- Toriello VA, et al. State of art of alkaline earth metal oxides catalysts used in the transesterification of oils for biodiesel production. Energies. 2021;14:1031. doi: 10.3390/en14041031

 

  1. Li FJ, Li HQ, Wang LG, Cao Y. Waste carbide slag as a solid base catalyst for effective synthesis of biodiesel via transesterification of soybean oil with methanol. Fuel Process Technol. 2015;131:421-429. doi: 10.1016/j.fuproc.2014.12.018

 

  1. Kojima Y, Takai S. Transesterification of vegetable oil with methanol using solid base catalyst of calcium oxide under ultrasonication. Chem Eng Process Process Intens. 2019;136:101-106. doi: 10.1016/j.cep.2018.12.007

 

  1. Kouzu M, Hidaka JS, Komichi Y, Nakano H, Yamamoto M. A process to transesterify vegetable oil with methanol in the presence of quick lime bit functioning as solid base catalyst. Fuel. 2009;88:1983-1990. doi: 10.1016/j.fuel.2009.03.013

 

  1. Ferreira GF, Pinto LFR, Filho RM, Fregolente LV, Hayward J, Bartley JK. Ethanol-based transesterification of rapeseed oil with CaO catalyst: Process optimization and validation using microalgal lipids. Catal Lett. 2025;155:84. doi: 10.1007/s10562-024-04921-6

 

  1. Liu R, Wang X, Zhao X, Feng P. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon. 2008;46:1664-1669. doi: 10.1016/j.carbon.2008.07.016

 

  1. Tacias-Pascacio VG, Torrestiana-Sánchez B, Magro LD, et al. Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renew Energy. 2019;135:1-9. doi: 10.1016/j.renene.2018.11.107

 

  1. Tran HL, Ryu YJ, Seong DH, Lim SM, Lee CG. An effective acid catalyst for biodiesel production from impure raw feedstocks. Biotechnol Bioprocess Eng. 2013;18:242-247. doi: 10.1007/s12257-012-0674-1

 

  1. Vargas EM, Neves MC, Tarelho LAC, Nunes MI. Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renew Energy. 2019;136:873-883. doi: 10.1016/j.renene.2019.01.048

 

  1. Suwannakarn K, Lotero E, Ngaosuwan K, Goodwin JG Jr. Simultaneous free fatty acid esterification and triglyceride transesterification using a solid acid catalyst with in situ removal of water and unreacted methanol. Ind Eng Chem Res. 2009;48:2810-2818. doi: 10.1021/ie800889w

 

  1. Pradana YS, Makertihartha IGBN, Indarto A, Prakoso T, Soerawidjaja TH. A review of biodiesel cold flow properties and its improvement methods: Towards sustainable biodiesel application. Energies. 2024;17:4543. doi: 10.3390/en17184543

 

  1. Osman WNAW, Rosli MH, Mazli WNA, Shafirah S. Comparative review of biodiesel production and purification. Carbon Capture Sci Technol. 2024;13:100264. doi: 10.1016/j.ccst.2024.100264

 

  1. Yuan X, Cao Y, Li J, et al. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnol Adv. 2023;67:108181. doi: 10.1016/j.biotechadv.2023.108181

 

  1. Spiekermann M, Seidensticker T. Catalytic processes for the selective hydrogenation of fats and oils: Reevaluating a mature technology for feedstock diversification. Catal Sci Technol. 2024;14:4390-4419. doi: 10.1039/D4CY00488D

 

  1. Ahmed M, Ahmad KA, Vo N, et al. Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: Function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies. Energy Convers Manag. 2023;280:116821. doi: 10.1016/j.enconman.2023.116821

 

  1. Sharma CY, Singh B, Korstad J. Latest developments on application of heterogenous basic catalysts for an efficient and eco-friendly synthesis of biodiesel: A review. Fuel. 2011;90:1309-1324. doi: 10.1016/j.fuel.2010.10.015

 

  1. Wang J, Zhang J, Chen C. Electrochemical CO2RR to C2+ products: A vision of dynamic surfaces of Cu-based catalysts. Chin J Catal. 2025;68:83-102. doi: 10.1016/S1872-2067(24)60185-3

 

  1. Evangelista JPC, Gondim AD, Di Souza L, Araujo AS. Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production: A review. Renew Sustain Energy Rev. 2016;59:887-894. doi: 10.1016/j.rser.2016.01.061

 

  1. Abu-Ghazala AH, Abdelhady HH, Mazhar AA, El-Deab MS. Exceptional room temperature catalytic transesterification of waste cooking oil to biodiesel using environmentally-benign K2CO3/γ-Al2O3 nano-catalyst. Chem Eng J. 2023;474:145784. doi: 10.1016/j.cej.2023.145784

 

  1. Yoshida T. Leaching of zinc oxide in acidic solution. Mater Trans. 2003;44(12):2489-2493. doi: 10.2320/matertrans.44.2489

 

  1. Pasupulety N, Gunda K, Liu Y, Rempel GL, Ng FTT. Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Appl Catal Gen. 2013;452:189-202. doi: 10.1016/j.apcata.2012.10.006

 

  1. Najeeb J, Akram S, Mumtaz MW, et al. Nanobiocatalysts for biodiesel synthesis through transesterification-a review. Catalysts. 2021;11:171. doi: 10.3390/catal11020171

 

  1. Xie W, Wang X, Guo L. Boosting biodiesel production from acidic oils using tin-doped tungstophosphoric acid embedded on ZIF-8 with Brönsted-Lewis acid sites as a reusable catalyst. Biomass Bioenergy. 2024;181:107064.doi: 10.1016/j.biombioe.2024.107064

 

  1. Wei M, Kuang Y, Duan Z, Li H. The crucial role of catalyst wettability for hydrogenation of biomass and carbon dioxide over heterogeneous catalysts. Cell Rep Phys Sci. 2023;4(5):101340. doi: 10.1016/j.xcrp.2023.101340

 

  1. Marinković DM, Stanković MV, Veličković AV, Avramović JM, Cakić MD, Veljković VB. The syntesis of CaO loaded onto Al2O3 from calcium acetate and its application in transesterification of sunflower oil. Adv Technol. 2015;4:26-32. doi: 10.5937/savteh1501026M

 

  1. Solhi L, Guccini V, Heise K, et al. Understanding nanocellulose-water interactions: Turning a detriment into an asset. Chem Rev. 2023;123(5):1925-2015. doi: 10.1021/acs.chemrev.2c00611

 

  1. Plácido J, Capareda S. Conversion of residues and by-products from the biodiesel industry into value-added products. Bioresour Bioprocess. 2016;3:23. doi: 10.1186/s40643-016-0100-1

 

  1. Santori G, Nicola G, Moglie M, Polonara F. A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl Energy. 2012;92:109-132. doi: 10.1016/j.apenergy.2011.10.031

 

  1. Ni J, Meunier FC. Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors. Appl Catal A Gen. 2007;333:122-130. doi: 10.1016/j.apcata.2007.09.019

 

  1. Zhang T, Shahbaz K, Farid MM. Glycerolysis of free fatty acid in vegetable oil deodorizer distillate catalyzed by phosphonium-based deep eutectic solvent. Renew Energy. 2020;160:363-373. doi: 10.1016/j.renene.2020.07.026

 

  1. Kusumaningtyas RD, Prasetiawan H, Anggraeni ND, Anisa EDN, Hartanto D. conversion of free fatty acid in Calophyllum inophyllum oil to fatty acid ester as precursor of bio-based epoxy plasticizer via SnCl2- catalyzed esterification. Polymers (Basel). 2023;15:123. doi: 10.3390/polym15010123

 

  1. Subramaniam K, Wong KY, Wong KH, Chong CT, Ng JH. Enhancing biodiesel production: A review of microchannel reactor technologies. Energies. 2024;17:1652. doi: 10.3390/en17071652

 

  1. Santacesaria E, Tesser R, Di Serio M, Guida M, Gaetano D, Garcia Agreda A. Kinetics and mass transfer of free fatty acids esterification with methanol in a tubular packed bed reactor: A key pretreatment in biodiesel production. Ind Eng Chem Res. 2007;46:5113-5121. doi: 10.1021/ie061642j

 

  1. Monika, Banga S, Pathak VV. Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus. 2023;10:100209. doi: 10.1016/j.nexus.2023.100209

 

  1. Mazubert A, Fletcher DF, Poux M, Aubin J. Hydrodynamics and mixing in continuous oscillatory flow reactors-Part II: Characterisation methods Chem Eng Process Intensification. 2016;102:102-116. doi: 10.1016/j.cep.2016.01.009

 

  1. Yusuf BO, Oladepo SA. Efficient and sustainable biodiesel production via transesterification: Catalysts and operating conditions. Catalysts. 2024;14:581. doi: 10.3390/catal14090581

 

  1. Álvarez MS, Longo MA, Rodríguez A, Deive FJ. The role of deep eutectic solvents in catalysis. A vision on their contribution to homogeneous, heterogeneous and electrocatalytic processes. J Ind Eng Chem. 2024;132:36-49. doi: 10.1016/j.jiec.2023.11.030

 

  1. İlgeni O, Akin AN. Development of alumina supported alkaline catalysts used for biodiesel production. Turk J Chem. 2009;33:281-287. doi: 10.3906/kim-0809-29

 

  1. Hidayatullah IM, Soetandar F, Sudiyasa PV, Cognet P, Hermansyah H. Ion exchange resin and entrapped Candida rugosa lipase for biodiesel synthesis in the recirculating packed-bed reactor: A performance comparison of heterogeneous catalysts. Energies. 2023;16:4765. doi: 10.3390/en16124765

 

  1. Sulaiman NF, Hashim ANN, Toemen S, et al. Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification. Renew Energy. 2020;153:1-11. doi: 10.1016/j.renene.2020.01.158

 

  1. Islam A, Taufiq-Yap YH, Chu CM, Ravindra P, Chan ES. Transesterification of palm oil using KF and NaNO3 catalysts supported on spherical millimetric gamma-Al2O3. Energy. 2013;59:23-29. doi: 10.1016/j.renene.2013.01.051

 

  1. Dos Reis SCM, Lachter ER, Nascimento RSV, Rodrigues RA Jr., Reid MG. Transesterification of Brazilian vegetable oils with methanol over ion-exchange resins. J Am Oil Chem Soc. 2005;82:661-665. doi: 10.1007/s11746-005-1125-y

 

  1. Corma A, Sara I. Optimization of alkaline earth metal oxide and hydroxide catalysts for base-catalyzed reactions. Adv Catal. 2006;49:239-302. doi: 10.1016/S0360-0564(05)49004-5

 

  1. Al-Hamamre Z, Sandouqa A, Al-Saida B, Shawabkeh RA, Alnaief M. Biodiesel production from waste cooking oil using heterogeneous KNO3/Oil shale ash catalyst. Renew Energy. 2023;211:470-483. doi: 10.1016/j.renene.2023.05.025

 

  1. Chang F, Zhou Q, Pan H, et al. Solid mixed-metal-oxide catalysts for biodiesel production: A review. Energy Technol. 2014;2:865-873.doi: 10.1002/ente.201402089

 

  1. Kesić Z, Lukić I, Zdujić M, Jovalekić M, Veljković V, Skala D. Assessment of CaTiO3, CaMnO3, CaZrO3 and Ca2Fe2O5 perovskites as heterogeneous base catalysts for biodiesel synthesis. Fuel Process Technol. 2016;143:162-168. doi: 10.1016/j.fuproc.2015.11.018

 

  1. Ye H, Shi J, Wu Y, et al. Research progress of nano-catalysts in the catalytic conversion of biomass to biofuels: Synthesis and application. Fuel. 2024;356:129594. doi: 10.1016/j.fuel.2023.129594

 

  1. Jensen MB, Pettersson LGM, Swang O, Olsbye U. CO2 sorption on MgO and CaO surfaces: A comparative quantum chemical cluster study. J Phys Chem B. 2005;109:16774-16781. doi: 10.1021/jp052037h

 

  1. Ataei N, Karbasi A, Baghdadi M. Tailoring the transesterification activity of MgO/oxidized g-C3N4 nanocatalyst for conversion of waste cooking oil into biodiesel. Fuel. 2023;347:128434. doi: 10.1016/j.fuel.2023.128434

 

  1. Khalaf HA, Mansour SE, El-Madani EA. The influence of sulfate contents on the surface properties of sulfate-modified tin(IV) oxide catalysts. J Assoc Arab Univ Basic Appl Sci. 2011;10(1):15-20. doi: 10.1016/j.jaubas.2011.06.003

 

  1. Varala R, Narayana V, Kulakarni SR, Khan M, Alwarthan A, Adil SF. Sulfated tin oxide (STO) – Structural properties and application in catalysis: A review. Arabian J Chem. 2016;9(4):550-573. doi: 10.1016/j.arabjc.2016.02.015

 

  1. Ro-Vega J, Aldana-Pérez A, Ricardo G, Niño-Gómez M. Sulfated Titania [TiO2/SO42−]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol. Appl Catal A Gen. 2010;379:24-29. doi: 10.1016/j.apcata.2010.02.020

 

  1. Devasan R, Ruatpuia JVL, Gouda SP, et al. Microwave-assisted biodiesel production using bio-waste catalyst and process optimization using response surface methodology and kinetic study. Sci Rep. 2023;13(1):2570. doi: 10.1038/s41598-023-29883-4

 

  1. Zuo D, Lane J, Culy D, Schultz M, Pullar A, Waxman M. Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. Appl Catal B Environ. 2013;129:342-350. doi: 10.1016/j.apcatb.2012.09.029

 

  1. Pawar A, Yadav V, Dhokpande S. Biodiesel production mediated by Eggshell catalyst: A review of the literature. Int Res J Eng Technol. 2021;8:3573-3578.

 

  1. Petraru A, Ursachi F, Amariei A. Nutritional characteristics assessment of sunflower seeds, oil and cake. Perspective of using sunflower oilcakes as a functional ingredient plants. Plants (Basel). 2021;10:2487. doi: 10.3390/plants10112487

 

  1. Aldobouni IA, Fadhil A, Saeed IK. Conversion of de-oiled castor seed cake into bio-oil and carbon adsorbents. Energy Sources Part A Recovery Util Environ Eff. 2015;37:2617-2624. doi: 10.1080/15567036.2012.733482

 

  1. Nahar K, Sunny S. Biodiesel, Glycerin and seed-cake production from roof-top gardening of Jatropha curcas L. Curr Environ Eng. 2016;3:1-1. doi: 10.2174/2212717803666160304002248

 

  1. Zaharudin NA, Remzi NS, Rashid R, Esivan SMM, Idris A, Othman N. Oleic acid enhancement in used frying palm oil via enzymatic acidolysis. Malaysian J Anal Sci. 2018;22(4):633-641. doi: 10.17576/mjas-2018-2204-09

 

  1. Zainal Z, Yusoff MSA. Enzymatic interesterification of palm stearin and palm kernel olein. J Am Oil Chem Soc. 1999;76:1003-1008.

 

  1. Mahmud MA, Anannya FR. Sugarcane bagasse - A source of cellulosic fiber for diverse applications. Heliyon. 2021;7(8):e07771. doi: 10.1016/j.heliyon.2021.e07771

 

  1. Hassim NA, Dian NLH. Usage of palm oil, palm kernel oil and their fractions as confectionery fats - review article. J Oil Palm Res. 2017;29:301-310. doi: 10.21894/jopr.2017.2903.01

 

  1. Ruatpuia JVL, Halder G, Vanlalchhandama M, et al. Jatropha curcas oil a potential feedstock for biodiesel production: A critical review. Fuel. 2024;370(1):131829. doi: 10.1016/j.fuel.2024.131829

 

  1. Hasan T, Nurhan A. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr Polym. 2003;54:73-82. doi: 10.1016/S0144-8617(03)00147-4

 

  1. Kuladeep AS, Bilval C, Pathak AN, Khan M, Kumar P. Recent accounts of green catalysts for biodiesel production: A mini review. Asian J Chem. 2023;35:1775-1780. doi: 10.14233/ajchem.2023.27964

 

  1. Yang L, Zhang A, Zheng Z. Shrimp shell catalyst for biodiesel production. Energy Fuels. 2009;23:3859-3865. doi: 10.1021/ef900273y

 

  1. Hossain M, Muntaha N, Osman LKM, et al. Triglyceride conversion of waste frying oil up to 98.46% using low concentration K+/CaO catalysts derived from eggshells. ACS Omega. 2021;15:35679-35691. doi: 10.1021/acsomega.1c05582

 

  1. Aworanti OA, Ajani AO, Agarry SE. Process parameter estimation of biodiesel production from waste frying oil (vegetable and palm oil) using homogeneous catalyst. J Food Process Technol. 2019;10:10. doi: 10.35248/2157-7110.19.10.811

 

  1. Graziottin PL, Rosset M, Lima DS, Perez-Lopez OW. Transesterification of different vegetable oils using eggshells from various sources as catalyst. Vibrational Spectrosc. 2020;109:103087. doi: 10.1016/j.vibspec.2020.103087

 

  1. Ngadi N, Hamdan NF, Hassan O, Jaya RP. Production of biodiesel from palm oil using egg shell waste as heterogeneous catalyst. J Teknol. 2016;78:92016. doi: 10.11113/jt.v78.4502

 

  1. Onoji SE, Iyuke OE, Igbafe AI, Daramola MO. Transesterification of rubber seed oil to biodiesel over a calcined waste rubber seed shell catalyst: Modeling and optimization of process variables. Energy Fuels. 2017;31:6109-6119. doi: 10.1021/acs.energyfuels.7b00331

 

  1. Coppola D, Lauritano C, Esposito FP, Riccio G, Rizzo C, Pascale C. Fish waste: From problem to valuable resource. Drugs. 2021;19:116. doi: 10.3390/md19020116

 

  1. Changmai B, Vanlalveni C, Ingle AP, Bhagatd R, Rokhum SL. Widely used catalysts in biodiesel production: A review. RSC Adv. 2020;10:41625-41679. doi: 10.1039/d0ra07931f

 

  1. Margaretha YY, Prastyo HS, Ayucitra A, Ismadji S. Calcium oxide from Pomacea sp. shell as a catalyst for biodiesel production. Int J Energy Environ Eng. 2012;3:33. doi: 10.1186/2251-6832-3-33

 

  1. Rahman WU, Khan RIA, Ahmad S, et al. Valorizing waste palm oil towards biodiesel production using calcareous eggshell based heterogeneous catalyst. Bioresour Technol Rep. 2023;23:101584. doi: 10.1016/j.biteb.2023.101584

 

  1. Suryaputra W, Winata I, Indraswati N, Ismadji S. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew Energy. 2013l;50:795-799. doi: 10.1016/j.renene.2012.08.060

 

  1. Aisien FA, Uwadiae KO, Aisien ET. Process optimization for blended waste frying oil in biodiesel production using CaO derived from African periwinkle shell catalyst through response surface methodology. Sustain Chem Environ. 2023;4:100042. doi: 10.1016/j.scenv.2023.100042

 

  1. de Sousa FP, dos Reis GP, Cardoso CC, Mussel WN, Pasa VMD. Performance of CaO from different sources as a catalyst precursor in soybean oil transesterification: Kinetics and leaching evaluation. J Environ Chem Eng. 2016;4(2):1970-1977. doi: 10.1016/j.jece.2016.03.009

 

  1. Giwa AS, Sheng M, Maurice NJ, et al. Biofuel recovery from plantain and banana plant wastes: Integration of biochemical and thermochemical approach. J Renew Mater. 2023;11(6):2593-2629. doi: 10.32604/jrm.2023.026314

 

  1. Piloto-Rodríguez R, Díaz-Domínguez Y, Tobío-Pérez I, Ortiz-Alvarez M, Hernández JS. Production of biodiesel from Jatropha curcas oil, In The production of biodiesel and related fuel additives. Bentham Science Publishers. 2024:103-153. doi: 10.2174/9789815196740124060006

 

  1. Nath B, Basumatary B, Wary N, et al. Agricultural waste-based heterogeneous catalyst for the production of biodiesel: A ranking study via the VIKOR method. Int J Energy Res. 2023;9:1-23. doi: 10.1155/2023/7208754

 

  1. Kumar G, Vishwas B, Johnson TS. Challenges for a new energy crop. Farming, Economics and Biofuel. 2012;1:441-460. doi: 10.1007/978-1-4614-4806-8-24

 

  1. Shafi ME, Alsabi HA, Almasoudi SH, Mufti FAM, Alowaidi SA, Alaswad AA. Catalytic conversion of Jatropha curcas oil to biodiesel using mussel shell-derived catalyst: Characterization, stability, and comparative study. Inorganics. 2024;12:109. doi: 10.3390/inorganics12040109

 

  1. Aslam M, Saxena P, Sarma A. Green technology for biodiesel production from Mesua ferrea L. seed oil. Energy Environ Res. 2014;4. doi: 10.5539/eer.v4n2p11

 

  1. Odude VO, Adesina AJ, Oyetunde OO, et al. Case of Banana fruit peel versus cocoa pod husk. Waste Biomass Valoriz. 2019,10:877-888. doi: 10.1007/s12649-017-0152-2

 

  1. Alfa KM, Meza-Sepulveda DC, Vaulot C, et al. Preliminary assessment using the approximate adsorption performance indicator. J Carbon Res. 2024;10:100. doi: 10.3390/c10040100

 

  1. D’Almeida AP, Albuquerque TL. Coconut husk valorization: innovations in bioproducts and environmental sustainability. Biomass Convers Biorefinery. 2024;15:13015-13035. doi: 10.1007/s13399-024-06080-5

 

  1. Chen GY, Shan R, Shi JF, Yan BB. Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Process Technol. 2015;133:8-13. doi: 10.1016/j.fuproc.2015.01.005

 

  1. Tobío-Pérez I, Domínguez YD, Machín LR, Pohl S, Lapuerta M, Piloto-Rodríguez R. Biomass-based heterogeneous catalysts for biodiesel production: A comprehensive review. Int J Energy Res. 2022;46(4):3782-3809. doi: 10.1002/er.7436

 

  1. Kong X, Liu G, Curtis JM. Characterization of canola oil based polyurethane wood adhesives. Int J Adhes Adhes. 2011;31:559-564. doi: 10.1016/j.ijadhadh.2011.05.004

 

  1. Cheng Y, Xue F, Yu D, Du S, Yang Y. Subcritical water extraction of natural products. Molecules. 2021;26(13):4004. doi: 10.3390/molecules26134004

 

  1. Cho HJ, Kim JK, Hong SW, Yeo YK. Development of a novel process for biodiesel production from palm fatty acid distillate (PFAD). Fuel Process Technol. 2012;104:271-280. doi: 10.1016/j.fuproc.2012.05.022

 

  1. Liu T, Li Z, Li W, Shi C, Wang Y. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. Bioresource Technol. 2013;133:618-621. doi: 10.1016/j.biortech.2013.01.163

 

  1. Nuryawan A, Sutiawan J, Rahmawaty A, Masruchin N, Bekhta P. Panel products made of oil palm trunk: A review of potency, environmental aspect, and comparison with wood-based composites. Polymers (Basel). 2022;14(9):1758. doi: 10.3390/polym14091758

 

  1. Ezebor F, Khairuddean M, Abdullah AZ, Boey PL. Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters. Energy. 2014;70:493-503. doi: 10.1016/j.energy.2014.04.024

 

  1. Jamil F, Kumar PSM, Al-Haj L, Myint MTZ, Al-Muhtaseb AH. Heterogeneous carbon-based catalyst modified by alkaline earth metal oxides for biodiesel production: Parametric and kinetic study. Energy Convers Manage X. 2021;10:100047. doi: 10.1016/j.ecmx.2020.100047

 

  1. Boonpai S, Suriye K, Jongsomjit B, Panpranot J, Praserthdam P. Hydrogen activated WOx-supported catalysts for Lewis acid transformation to Bronsted acid observed by in situ DRIFTS of adsorbed ammonia: Effect of different supports on the Lewis acid transformation. Catal Today. 2020;358:370-386. doi: 10.1016/j.cattod.2019.06.073

 

  1. Krishnan SG, Pua FL, Zhang F. A review of magnetic solid catalyst development for sustainable biodiesel production. Biomass Bioenergy. 2021;149:106099. doi: 10.1016/j.biombioe.2021.106099

 

  1. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN. The effects of catalysts in biodiesel production: A review. J Ind Eng Chem. 2013;19:14-26. doi: 10.1016/j.jiec.2012.07.009

 

  1. Sharifi M, Tangestaninejad S, Moghadam M, et al. Metal-organic frameworks-derived CaO/ZnO composites as stable catalysts for biodiesel production from soybean oil at room temperature. Sci Rep. 2025;15:3610. doi: 10.1038/s41598-025-87393-x

 

  1. Zeljka K, Ivana L, Miodrag Z, Ljiljana M, Dejan S. Calcium oxide based catalysts for biodiesel production: A review. Chem Ind Chem Eng Q. 2016;22:391-408. doi: 10.2298/CICEQ160203010K

 

  1. Tahvildari K, Anaraki YN, Fazaeli R. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. J Environ Health Sci Eng. 2015;13:73.doi: 10.1186/s40201-015-0226-7

 

  1. Hsin TM, Chen S, Guo E, Tsai CH, Pruski M, Lin VSY. Calcium containing silicate mixed oxide-based heterogeneous catalysts for biodiesel production. Top Catal. 2010;53:746-754. doi: 10.1007/s11244-010-9462-3

 

  1. Chmielewska E. Natural zeolites as sustainable and environmental inorganic resources over the history to presentnatural zeolites as sustainable and environmental inorganic resources over the history to present. Gen Chem. 2019;5:190001. doi: 10.21127/yaoyigc20190001

 

  1. Sheikh KA, Francesconi VZ, Zevaco TA, Sauer J. Carbonylation of dimethoxymethane: A study on the reactivity of different solid acid catalysts. Catal Sci Technol. 2024;14:1148-1166. doi: 10.1039/D3CY01286G

 

  1. Almuqati NS, Aldawsari AM, Alharbi KN, et al. Catalytic production of light Olefins: Perspective and prospective. Fuel. 2024;366:131270. doi: 10.1016/j.fuel.2024.131270

 

  1. Khan I, Altaf A, Sadiq S, et al. Towards sustainable solutions: Comprehensive review of advanced porous materials for CO₂ capture, hydrogen generation, pollutant degradation, and energy application. Chem Eng J Adv. 2025;21:100691. doi: 10.1016/j.ceja.2024.100691

 

  1. Abdelwahab O, Thabet WM. Natural zeolites and zeolite composites for heavy metal removal from contaminated water and their applications in aquaculture Systems: A review. Egypt J Aquat Res. 2023;49(4):431-443. doi: 10.1016/j.ejar.2023.11.004

 

  1. Madhu J, Ramakrishnan VM, Santhanam A, et al. Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO2 adsorption properties. Environ Res. 2022;214:113949. doi: 10.1016/j.envres.2022.113949

 

  1. Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA, Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chem Eng J Adv. 2021;6:100091. doi: 10.1016/j.ceja.2021.100091

 

  1. Twohig-Bennett C, Jones A. The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ Res. 2018;166:628-637. doi: 10.1016/j.envres.2018.06.030

 

  1. Maghfirah A, Ilmi MM, Fajar ATN, Kadja GTM. A review on the green synthesis of hierarchically porous zeolite. Mater Today Chem. 2020;17:100348. doi: 10.1016/j.mtchem.2020.100348

 

  1. Khawaja RE, Sonar S, Barakat T, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catal Today. 2022;405-406:212-220. doi: 10.1016/j.cattod.2022.05.022

 

  1. Jindal M, Palla VCS, Thallada B. Effect of zeolite structure and Si/Al ratio on cotton stalks hydropyrolysis. Bioresour Technol. 2023;376:128933. doi: 10.1016/j.biortech.2023.128933

 

  1. Soltania S, Zamaniyan A, Darian JT, Soltanali S. The effect of Si/Al ratio of ZSM-12 zeolite on its morphology, acidity and crystal size for the catalytic performance in the HTO process. RSC Adv. 2024;14:5380-5389. doi: 10.1039/D3RA08792A

 

  1. Sheoran K, Kaur H, Siwal SS, Saini AK, Vo DVN, Thakur VK. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. Chemosphere. 2022; 299:134364. doi: 10.1016/j.chemosphere.2022.134364

 

  1. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG. Carbon nanotube aerogels. Adv Mater. 2007;19:661-664. doi: 10.1002/adma.200601748

 

  1. Singh R, Rawat H, Kumar A, et al. Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering. Heliyon. 2024;10(13):e33542. doi: 10.1016/j.heliyon.2024.e33542

 

  1. Elgharbawy AS, Abdel-Kawi MA, Saleh IH, Hanafy MA, Ali RM. Optimizing biodiesel production: Energy efficiency and kinetic performance of microwave and ultrasonic transesterification vs. conventional techniques. Biomass Bioenergy. 2025;193:107593. doi: 10.1016/j.biombioe.2025.107593

 

  1. Javed F, Saif-ul-Allah MW, Ahmed F, et al. Kinetics of biodiesel production from microalgae using microbubble interfacial technology. Bioengineering. 2022;9:739. doi: 10.3390/bioengineering9120739

 

  1. Harmsen GJ. Reactive distillation: The front-runner of industrial process intensification: A full review of commercial applications, research, scale-up, design and operation. Chem Eng Process Process Intens. 2007;46(9):774-780. doi: 10.1016/j.cep.2007.06.005

 

  1. Kiss AA. Novel catalytic reactive distillation processes for a sustainable chemical industry. Top Catal. 2019;62:1132-1148. doi: 10.1007/s11244-018-1052-9

 

  1. Fernandez MF, Barroso B, Meyer XM, et al. Experiments and dynamic modeling of a reactive distillation column for the production of ethyl acetate by considering the heterogeneous catalyst pilot complexities. Chem Eng Res Design. 2013;91:2309-2322. doi: 10.1016/j.cherd.2013.05.013

 

  1. Sádaba I, Granados ML, Riisager A, Taarning E. Deactivation of solid catalysts in liquid media: The case of leaching of active sites in biomass conversion reactions. Green Chem. 2015;46. doi: 10.1039/C5GC00804B

 

  1. Bhaskar M, Valavarasu G, Meenakshisundaram A, Balaraman KS. Application of a three phase heterogeneous model to analyse the performance of a pilot plant trickle bed reactor. Petrol Sci Technol. 2002;20:251-268. doi: 10.1081/LFT-120002098

 

  1. Zhang M, Dong J, Cai P. Mechanisms of mass transfer enhancement by phase-transfer catalysis for permanganate oxidizing dense non-aqueous phase liquid (DNAPL) TCE. Chemosphere. 2020;240:124867. doi: 10.1016/j.chemosphere.2019.124867

 

  1. Kim YE, Lee KY, Lee MS. Morphology-dependent wrinkled silica-supported Pd catalysts for hydrogenation of furfural under mild conditions. Catal Today. 2024;426:114392. doi: 10.1016/j.cattod.2023.114392

 

  1. Dalei NN, Gupta A. Adoption of renewable energy to phase down fossil fuel energy consumption and mitigate territorial emissions: Evidence from BRICS group countries using panel FGLS and panel GEE models. Discov Sustain. 2024;5:52. doi: 10.1007/s43621-024-00237-y

 

  1. Sarina S. Overview of catalysts in biodiesel production. J Eng Appl Sci. 2016;11.

 

  1. Wu Y. Development and application of green catalysts: Challenges, optimization, and future perspectives. Highlights Sci Eng Technol. 2024;116:308-314. doi: 10.54097/3mn50856

 

  1. Narasimharao K, Adam L, Karen W. Catalysts in production of biodiesel: A review. J Biobased Mater Bioenergy. 2007;1:19-30. doi: 10.1166/jbmb.2007.1976

 

  1. Opotu LA, Inuwa IM, Wong S, Ngadi N, Razmi FA. Errors and inconsistencies in scientific reporting of aqueous phase adsorption of contaminants: A bibliometric study. Clean Mater. 2022;5:100100. doi: 10.1016/j.clema.2022.100100

 

  1. Oliveira BH, Coradi GV, Oliva-Neto P, Nascimento VMG. Biocatalytic benefits of immobilized Fusarium sp. (GFC) lipase from solid state fermentation on free lipase from submerged fermentation. Ind Crops Prod. 2022;147:112235. doi: 10.1016/j.indcrop.2020.112235

 

  1. Mamtani K, Shahbaz K, Farid MM. Glycerolysis of free fatty acids: A review. Renew Sustain Energy Rev. 2021;137:110501. doi: 10.1016/j.rser.2020.110501

 

  1. Khan S, Ullah MW, Siddique R. Role of recombinant DNA technology to improve life. Int J Genomics. 2016;2016:2405954. doi: 10.1155/2016/2405954

 

  1. Yu F, Deng K, Du M, Wang W, Liu F, Liang D. Electrochemical CO2 reduction: From catalysts to reactive thermodynamics and kinetics. Carbon Capture Sci Technol. 2023;6:100081. doi: 10.1016/j.ccst.2022.100081

 

  1. Checa M, Nogales-Delgado S, Montes V, Encinar JM. Recent advances in glycerol catalytic valorization: A review. Catalysts. 2020;10:1279. doi: 10.3390/catal10111279

 

  1. Pirzadi Z, Meshkani F, Vo DVN. Enhanced syngas production from CO2 reforming of biomass-derived glycerol: Influence of CaO.Al2O3 support composition on the catalytic performance of Ni-based catalysts. Energy Convers Manage. 2024;311:118227. doi: 10.1016/j.enconman.2024.118227

 

  1. Barreto RDT, Ramos LP, Jorge RMM, Jorge LMM. Turning glycerol surplus into renewable syngas through glycerol steam reforming over a sol-gel Ni–Mo2C-Al2O3 catalyst. Int J Hydrog Energy. 2023;48(44):16614-16629. doi: 10.1016/j.ijhydene.2023.01.166

 

  1. Qi W, Xu Q, Yan Y. Preparation of syngas by reforming of biological glycerol on charcoal catalyst. Environ Prog Sustain Energy. 2016;35:1765-1771. doi: 10.1002/ep.12388

 

  1. Karmakar A, Daftari T, Sivagami K, et al. A comprehensive insight into Waste to Energy conversion strategies in India and its associated air pollution hazard. Environ Technol Innov. 2023;29:103017. doi: 10.1016/j.eti.2023.103017

 

  1. Reshad AS, Tiwari P, Goud VV. Extraction of oil from rubber seeds for biodiesel application: Optimization of parameters. Fuel. 2015;150:636-644. doi: 10.1016/j.fuel.2015.02.058

 

  1. Olatundun EA, Borokini OO, Betiku E. Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth. Renew Energy. 2020;166:163-175. doi: 10.1016/j.renene.2020.11.131

 

  1. Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B. Application of walnut shell ash/ZnO/K2CO3 as a new composite catalyst for biodiesel generation from Moringa oleifera oil. Fuel. 2022;311:122624. doi: 10.1016/j.fuel.2021.122624

 

  1. Gohain M, Khairujjaman L, Paul AK, et al. Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation. Renew Energy. 2019;147:541-555. doi: 10.1016/j.renene.2019.09.016

 

  1. Tsai CH, Tsai WT. Sustainable processes reusing potassium-rich biomass ash as a green catalyst for biodiesel production: A mini-review. Processes. 2024;12:2736.doi: 10.3390/pr12122736

 

  1. Rostamian R, Khalilzadeh MA, Zareyee D. Wood ash biocatalyst as a novel green catalyst and its application for the synthesis of benzochromene derivatives. Sci Rep. 2022;12(1):1145. doi: 10.1038/s41598-022-05133-x

 

  1. Tulashie SK, Alale EM, Agudah PQ, et al. A review on the production of biodiesel from waste cooking oil: A circular economy approach. Biofuels. 2024;16:1-21. doi: 10.1080/17597269.2024.2384277

 

  1. Malode SJ, Gaddi SAM, Kamble PJ, Nalwad AA, Muddapur UM, Shetti NP. Recent evolutionary trends in the production of biofuels. Mater Sci Energy Technol. 2022;5:262-277.
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing