Modeling and mapping the distribution and priority seed zone for the conservation of the vulnerable Vitellaria Paradoxa (Shea nut tree) in the Guinea savanna ecosystem

Vitellaria paradoxa C.F. Gaertn is a native and valuable economic tree species found in the Guinea savanna ecosystem of West Africa. The majority of rural populations, especially women, depend on it for food, domestic energy (fuelwood), and as a source of employment and income. Unfortunately, the extensive felling of this tree species for charcoal production over the past decades poses a grave threat to both the environment and the livelihoods of people; therefore, efforts to restore and conserve the tree species are urgently required. The salient question here is where to obtain viable seeds for its propagation and restoration. This study applied remote sensing technology to extract vegetation-related phenotypic data from satellite images (Landsat 8 – 9), combined with climate data, using a machine learning-based species distribution model. This approach aimed to identify environmentally suitable habitats for V. paradoxa and locate areas likely to contain healthy and viable seed sources. These areas were identified through the spatial combination of thresholded habitat suitability maps and vegetation indices – an approach herein referred to as the seed zone priority location index (SZPI). The SZPI is an area that is not only climatically suitable for V. paradoxa distribution and survival but also where healthy and viable tree populations can be found. The SZPI is expected to provide vital information necessary to guide the location and collection of suitable and viable seeds required for the restoration and conservation of V. paradoxa.
- Salako G, Sawyerr H, Bashir A, Adebayo A, Adio A. Deductive and multi-criteria approach to ecosystem modelling and habitat mapping of shea butter trees (Vitellaria paradoxa) in the tropical savanna. Int J Environ Agric Biotechnol (IJEAB). 2017;2(6):3078-3088. doi: 10.22161/ijeab/2.6.38
- Goreja WG. Shea Butter: The Nourishing Properties of Africa’s Best-Kept Natural Beauty Secret. Delhi: Amazing Herbs Press Paperback, TNC International Inc; 2004.
- Natural Resources Commission NRC. Lost Crops of Africa. Vol. 2. Washington, D.C. The National Academies Press; 2006. p. 379.
- Amissah N, Akapo B, Yeboah J, Blay E. Asexual propagation of sheanut tree (vitellaria paradoxa c.f. Gaertn.) using a container layering technique. Am J Plant Sci. 2013;4:1758-1764. doi: 10.4236/ajps.2013.49216
- FAOSAT. Wood Charcoal Production in Africa GRID-Arendal (Grida.No). Rome: FAOSAT; 2014.
- FAOSTAT. Energy Statistics Database, United Nations Statistics Division. Rome: FAOSTAT; 2019.
- IUCN; 2013. Available from: https://www.iucnredlist.org/ species/37083/10029534 [Last accessed on 2024 Oct 14].
- Shu-Aib JS, Collins PB, Abbas SK. Prospects of shea trees (Vitellaria paradoxa) in climate change mitigation - a case study in cheyohi in the Kumbungu district of ghana. Ghana J Sci Technol Dev. 2023;9(1):141-159. doi: 10.47881/209.967x
- Choungo Nguekeng PB, Hendre P, Tchoundjeu Z, et al. The current state of knowledge of shea nut tree (Vitellaria paradoxa C.F.Gaertner.) for nutritional value and tree improvement in west and central Africa. Forests. 2021;12(12):1740. doi: 10.3390/f12121740
- Simko I, Jimenez-Berni JA, Sirault XRR. Phenomic approaches and tools for phytopathologists. Phytopathology. 2017;107:6-17. doi: 10.1094/PHYTO-02-16-0082-RVW
- Yang G, Jiangang L, Chunjiang Z, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front Plant Sci. 2017;30:1111. doi: 10.3389/fpls.2017.01111
- Guisan A, Thuiller W, Zimmermann NE. Habitat Suitability and Distribution Models: With Applications in R. Cambridge: Cambridge University Press; 2017. p. 478.
- Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ. 1996;58(3):289-298. doi: 10.1016/S0034-4257(96)00072-7
- Gao BC. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 1996;58(3):257-266. doi: 10.1016/S0034-4257(96)00067-3
- Reed BC, Schwartz MD, Xiao X. Remote sensing phenology: Status and the way forward. In: Noormets A, editor. Phenology of Ecosystem Processes. New York, New York, NY: Springer; 2009. p. 231-246.
- Huete AR, Didan K, Shimabukuro YE, et al. Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett. 2006;33(6):L06405, doi: 10.1029/2005GL025583
- Jiang Z, Huete AR, Didan K, Miura T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ. 2008;112(10):3833-3845. doi: 10.1016/j.rse.2008.06.006
- Youtie B, Shaw N, Fisk M, Jensen SA. Strategy for maximizing native plant material diversity for ecological restoration, germplasm conservation and genecology research. In: Proceedings of the 8th European Conference on Ecological Restoration. České Budějovice: Czech Republic; 2012. p. 9-14.
- Kim C, Kim W, Song W, Cho J, Choi J. Prediction of native seed habitat distribution according to SSP scenario and seed transfer zones: A focus on acer pictum subsp. Mono and Quercus acuta. Forests. 2023;14(1):87. doi: 10.3390/f14010087
- Bower AD, St Clair JB, Erickson V. Generalized provisional seed zones for native plants. Ecol Appl. 2014;24(5):913-919. doi: 10.1890/13-0285.1
- Pike C, Potter KM, Berrang P, et al. New seed-collection zones for the eastern United States: The eastern seed zone forum. J Forestry. 2020;9(2):271. doi: 10.1093/jofore/fvaa013
- Crow TM, Albeke SE, Buerkle CA, Hufford KM. Provisional methods to guide species-specific seed transfer in ecological restoration. Ecosphere. 2018;9:e02059. doi: 10.1002/ecs2.2059
- Shryock DF, Defalco LA, Esque TC. Spatial decision-support tools to guide restoration and seed-sourcing in the desert Southwest. Ecosphere. 2018;9(10):e02453. doi: 10.1002/ecs2.2453
- Widrlechner MP, Daly C, Keller M, Kaplan K. Horticultural applications of a newly revised USDA plant hardiness zone map. Hort Technol. 2012;22:6-19.
- Richter M. Temperatures in the tropics. In: Pancel L, Köhl M, editors. Tropical Forestry Handbook. Berlin, Heidelberg: Springer; 2016.
- Aiello-Lammens ME, Boria RA, Radossavljevic A, Vilela B, Anderson RP. SpThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 2015;38:541-545. doi: 10.1111/ecog.01132
- Phillips SJ, Dudik M, Elith J, et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol Appl. 2009;19:181-197. doi: 10.1890/07-2153.1
- Ghorbani A, Amir MM, Esmali Ouri A. Utility of the NDVI for land/canopy cover mapping in Khalkhal County (Iran). Ann Biolo Res. 2012;3:5494-5503.
- Rouse JW, Haas RH, Scheel JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium. 1974;1:48-62.
- McFeeters SK. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens. 1996;17:1425-1432. doi: 10.1080/0143116960894871
- Xu H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 2006;27:3025-3033. doi: 10.1080/01431160600589179
- Lymburner L, Beggs PJ, Jacobson CR. Estimation of canopy-average surface-specific leaf area using landsat tm data. Photogrammetr Eng Remote Sens 2000;66(2):183-191.
- Karger DN, Conrad O, Böhner J, et al. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017;4:170122. doi: 10.1038/sdata.2017.122
- Breiman L, Cutler A. Description: Classification and Regression Based on a Forest of Trees Using Random Inputs, Based on Breiman. Package: RandomForest; 2001. doi: 10.1023/A:1010933404324
- Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J. Predictive performance of presence only species distribution models: A benchmark study with reproducible code. Ecolo Monograp. 2022;92(1):e0148. doi: 10.1002/ecm.1486
- Salako G, Russell DJ, Stucke A, Einar E. Assessment of multiple model algorithms to predict earthworm geographic distribution range and biodiversity in Germany: Implications for soil-monitoring and species-conservation needs. Biodivers Conserv. 2023;32:2365-2394. doi:10.1007/s10531-023-02608-9
- Elith J, Graham CH, Anderson RP, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129-151.
- Li X, Wang YL. Applying various algorithms for species distribution modelling. Integr Zool. 2013;8:124-135. doi: 10.1111/1749-4877.12000
- Liaw A, Wiener M. Classification and regression by random forest. R News. 2002;2:18-22.
- Hijmans RJ, Elith J. Spatial Distribution Models, Spatial Data Science With R; 2019. Available from: https:// rspatial.org/sdm/sdm.pdf [Last accessed on 2024 Jun 10].
- Fritsch S, Guenther F, Wright M. Neuralnet: Training of Neural Networks R Package e Version; 2019. Available from: https://cran.r-project.org/package=neuralnet [Last accessed on 2024 Apr 12].
- Salako G, Zaitsev A, Betancur-Corredor B, Russell DJ. Modelling and spatial prediction of earthworms ecological-categories distribution reveal their habitat and environmental preferences. Ecol Indic. 2024;169:1128. doi: 10.1016/j.ecolind.2024.112832
- Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as discrimination measure in species distribution modelling. Glob Ecol Biogr. 2011;21(4):498-507. doi: 10.1111/j.1466-8238.2011.00683.x
- Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Measure. 1960;20:37-46. doi: 10.1177/001316446002000104
- Manel S, Ceri WH, Ormerod SJ. Evaluating presence-absence models in ecology: The need to account for prevalence. J Appl Ecol. 2001;38:921-931. doi: 10.1046/j.1365-2664.2001.00647.x
- Silva MC, Moonlight P, Oliveira RS, Rowland L, Pennington TR. COSST: A tool to facilitate seed provenancing for climate-smart ecosystem restoration. J Appl Ecol. 2024;62:677-688. doi: 10.1111/1365-2664.14854
- Varvatkar A. Improve Neural Network Performance; 2023. Available from: https://www.kaggle.com/code/ avadhutvarvatkar/improve-neural-network-performance [Last accessed on 2024 May 15].
- Kipp S, Mistele B, Schmidhalter U. Identification of stay-green and early senescence phenotypes in high-yielding winter wheat, and their relationship to grain yield and grain protein concentration using high-throughput phenotyping techniques. Funct Plant Biol. 2013;41:227-235. doi: 10.1071/FP13221
- Jansen M, Pinto F, Nagel KA, et al. Non-invasive phenotyping methodologies enable the accurate characterization of growth and performance of shoots and roots. In: Tuberosa R, editor. Genomics of Plant Genetic Resources. Dordrecht: Springer Science Business Media; 2014.
- Li C, Zhu X, Wei Y, et al. Estimating apple tree canopy chlorophyll content based on sentinel-2A remote sensing imaging. Sci Rep. 2018;8:3756. doi: 101038/s41598-018-21963-0
- He L, Ren X, Wang Y, et al. Comparing methods for estimating leaf area index by multi-angular remote sensing in winter wheat. Sci Rep. 2020;10:13943. doi: 101038/s41598-020-70951-w
- Bao J, Yu M, Li J, Wang G, Tang Y, Zhi J. Determination of leaf nitrogen content in apple and jujube by near infrared spectroscopy. Sci Rep. 2024;14:20884. doi: 10.1038/s41598-024-71590-1
- Oyebanji OO, Salako G, Nneji LM, et al. Impact of climate change on the spatial distribution of endemic legume species of the Guineo-Congolian forest, Africa. Ecol Indic. 2020;122:107282. doi: 10.1016/j.ecolind.2020.107282
- Salako G, Oyebanji OO, Olagunju TE, Howe GT. Potential impact of climate change on the distribution of some selected legumes in Cameroon and adjoining Nigeria border. Afr J Ecol. 2021;59:959-975. doi: 10.1111/aje.1291
- Atalla JA. A Review of Institutional Frameworks for Conservation of the Shea Nut Tree in Uganda. United Nations University Land Restoration Training Programme; 2015. Available from: https://www. grocentre.is/static/gro/publication/427/document/atalla 2015.pdf [Last accessed on 2025 Jan 15].
- Wundengba D. Key Facts About the Shea Tree Northernghana; 2020. Available from: https:// northernghana.net/facts-about-the-shea-tree/ 2020 [Last accessed on 2024 Oct 23].
- Okao M, Odoi JB, And Okia CA. Growth performance of shea nut tree (Vitellaria Paradoxa) collections in an ex-situ trial plot in lira district, Uganda. Ijrdo J Agric Res. 2019;5:2455-2476. doi: 10.53555/ar.v5i4.2776
- Bondé L, Ouédraogo O, Traoré S, Thiombiano A, Boussim JI. Impact of environmental conditions on fruit production patterns of shea tree (Vitellaria paradoxa C.F.Gaertn) in West Africa. Afr J Ecol. 2019;57: 353-362. doi: 10.1111/aje.12621
- Bayala J, Sanon Z, Bazié P, et al. Relationships between climate at origin and seedling traits in eight pan African. Provenances of Vitellaria paradoxa C.F. Gaertn. Under imposed drought stress. Agrofor Syst. 2018;92:1455-1467. doi: 10.1007/s10457-017-0091-8
- Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol. 2005;20(9):503-510. doi: 10.1016/j.tree.2005.05.011