AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025190147
ORIGINAL RESEARCH ARTICLE

Spatiotemporal variability and climate forcing mechanisms of wind and solar energy in northwest China

Shuyue Qin1† Bingyue Wen1†* Wei Bao1 Xuexian Wang1 Zihan Yang2 Ruei-Yuan Wang3 Hongbei Guo4 Dongping Yu1 Yanfang Jin1 Yunxia Ma5 Taohui Li2*
Show Less
1 Unit of Sino-British Cooperative, School of International Business, Yunnan University of Finance and Economics, Kunming, Yunnan, China
2 Yunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, School of Earth Science, Yunnan University, Kunming, Yunnan, China
3 Department of Geography, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
4 Department of Marxism, School of Marxism, Southwest Forestry University, Kunming, Yunnan, China
5 Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming, Yunnan, China
†These authors contributed equally to this work.
Received: 8 May 2025 | Revised: 30 May 2025 | Accepted: 5 June 2025 | Published online: 2 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

As a pivotal region for China’s wind and solar energy strategic deployment, northwest China holds critical importance in the national energy transition. Our integrated analysis reveals concerning multidecadal declines in wind energy resources (WER) and solar energy resources (SER) – climate-sensitive parameters requiring urgent mechanistic elucidation. Through the synergistic application of meteorological station networks, reanalysis datasets, and machine learning architectures, we establish three key findings: (i) both resources demonstrate regime shifts with distinct phases – initial growth, transitional decline, and accelerated depletion – superimposed with significant 29 – 30-year oscillation signals (wavelet analysis); (ii) WER and SER display marked differences in spatial evolution; WER shows an increasing trend from south to north, while SER shows a decreasing trend from the central region to the surrounding areas; and (iii) the main controlling factors of WER have shifted from air–sea cycle dominance to inter-regional climate variability, while SER exhibits the opposite trend. This is mainly attributed to a significant reduction in cloud cover and a marked decrease in the rate of increase of the daily maximum temperature. This study demonstrates that synoptic-scale circulation reorganizations override local anthropogenic impacts in determining the viability of renewable energy resources.

Keywords
Global warming
Wind energy resources
Solar energy resources
Spatiotemporal characteristics
Driving mechanism
Funding
This work was jointly supported by the Guangdong University of Petrochemical Technology (GDUPT) Talents Recruitment Project (grant number: 2019rc098), the Academic Affairs of GDUPT for the Goal Problem- Oriented Teaching Innovation and Practice Project (grant number: 41967038), and the Scientific Research Innovation Foundation of Yunnan Province (grant number: KC-242410028).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Randerson JT, Liu H, Flanner MG, et al. The impact of boreal forest fire on climate warming. Science. 2006;314(5802):1130-1132. doi: 10.1126/science.1132075

 

  1. Palutikof JP, Boulter SL, Field CB, et al. Enhancing the review process in global environmental assessments: The case of the IPCC. Environ Sci Policy. 2023;139:118-129. doi: 10.1016/J.ENVSCI.2022.10.012

 

  1. Terlouw T, Savvakis N, Bauer C, McKenna R, Arampatzis G. Designing multi-energy systems in mediterranean regions towards energy autonomy. Appl Energy. 2025;377(PB):124458. doi: 10.1016/J.APENERGY.2024.124458

 

  1. Arnaoutakis GE, Georgia K, Eirini D, Katsaprakakis A. Combined operation of wind-pumped hydro storage plant with a concentrating solar power plant for insular systems: A case study for the island of rhodes. Energies. 2022;15(18):6822. doi: 10.3390/EN15186822

 

  1. Papaefthymiou G, Dragoon K. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy. 2016;92:69-82. doi: 10.1016/j.enpol.2016.01.025

 

  1. Kim SK, Park S. Impacts of renewable energy on climate vulnerability: A global perspective for energy transition in a climate adaptation framework. Sci Total Environ. 2023;859(P1):160175. doi: 10.1016/J.SCITOTENV.2022.160175

 

  1. Arnaoutakis GE, Papadakis N, Katsaprakakis KD. CombiCSP: A python routine for dynamic modeling of concentrating solar power plants. Softw Impacts. 2022;13:100367. doi: 10.1016/J.SIMPA.2022.100367

 

  1. Lv A, Li T, Zhang W, Liu Y. Spatiotemporal distribution and complementarity of wind and solar energy in China. Energies. 2022;15(19):7365. doi: 10.3390/EN15197365

 

  1. Feng Y, Que L, Feng J. Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China. Atmos Oceanic Sci Lett. 2020;13(2):136-145. doi: 10.1080/16742834.2019.1705753

 

  1. Liepert BG. Observed reductions of surface solar radiation at sites in the United States and world from 1961 to 1990. Geophys Res Lett. 2002;29(10):61-64. doi: 10.1029/2002GL014910

 

  1. Wild M, Ohmura A, Makowski K. Impact of global dimming and brightening on global warming. Geophys Res Lett. 2007;34(4):1-4. doi: 10.1029/2006GL028031

 

  1. Li T, Lv A, Zhang W, Liu Y. Spatiotemporal characteristics of watershed warming and wetting: The response to atmospheric circulation in arid areas of northwest China. Atmosphere. 2023;14(1):151. doi: 10.3390/ATMOS14010151

 

  1. Li T, Liu Y, Lv A. Review of research on the present situation of development and resource potential of wind and solar energy in China. Energies. 2024;17(16):4158. doi: 10.3390/EN17164158

 

  1. Jakub J, Mohammed G, Pietro CE, et al. Complementarity of wind and solar power in North Africa: Potential for alleviating energy droughts and impacts of the North Atlantic Oscillation. Renew Sustain Energy Rev. 2024;191:114181. doi: 10.1016/J.RSER.2023.114181

 

  1. Sawadogo W, Reboita SM, Faye A, et al. Current and future potential of solar and wind energy over Africa using the regCM4 CORDEX-CORE ensemble. Clim Dyn. 2020;57(10):1647-1672. doi: 10.1007/s00382-020-05377-1

 

  1. Bin H, Aifeng L, Jianjun W, Lin Z, Ming L. Drought hazard assessment and spatial characteristics analysis in China. J Geogr Sci. 2011;21(02):235-249. doi: 10.1007/s11442-011-0841-x

 

  1. Fan L, Lv A, Zhang W. Temporal-spatial variation characteristics of drought and its relationshipwith atmospheric circulation in Qinghai province. J Arid Land Res Environ. 2021;35(12):60-65. doi: 10.13448/j.cnki.jalre.2021.326

 

  1. Zhu R, Wang Y, Xiang Y, et al. Study on climate characteristics and development potential of wind energy resources in China. Acta Energiae Solaris Sinica. 2021;42(6):409-418. doi: 10.19912/j.0254-0096.tynxb.2020-0130

 

  1. Zhang S, Li X. Study on application of ERA5 data to solar energy resource assessment over China’s region. Acta Energiae Solaris Sinica. 2023;44(05):280-285. doi: 10.19912/j.0254-0096.tynxb.2021-1604

 

  1. Yin J, Hu W, Chen A, Li T, Zhang W. Human-caused increases in organic carbon burial in plateau lakes: The response to warming effect. Sci Total Environ. 2024;937:173556. doi: 10.1016/J.SCITOTENV.2024.173556

 

  1. Li T, Zhang W, Lv A, Liu Y. Temporal and spatial characteristics of heat resources in growing season in yunnan province, China. Mt Res. 2023;41(3):361-374. doi: 10.16089/j.cnki.1008-2786.000754

 

  1. Chen J, Xu D, Luo Y, Zheng X, Zhou C, Kang W. Changes in solar radiation and their climatic influences over yunnan-guizhou plateau for 1961 ~ 2019. Res Environ Yangtze Basin. 2012;21(S1):179-184.

 

  1. Liu X, Jiang Y, Ren G, Liang X, Zhang C. Effect of urbanization and observation environment change on wind speed trend in hebei province, China. Plateau Meteorol. 2009;28(2):433-439.

 

  1. Lu Q, Rao J, Liang Z, et al. The sudden stratospheric warming in January 2021. Environ Res Lett. 2021;16(8):084029. doi: 10.1088/1748-9326/AC12F4

 

  1. Hongming Y, Yuan Y, Guirong T, Yucheng Z. Possible impact of sudden stratospheric warming on the intraseasonal reversal of the temperature over East Asia in winter 2020/21. Atmos Res. 2022;268:106016. doi: 10.1016/J.ATMOSRES.2022.106016

 

  1. Wang P, Yang J, Zhang Q, He J, Wang D, Lu D. Climate change characteristic of northwest China in recent half century. Adv Earth Sci. 2007;6:649-656.

 

  1. Lan L, Li D. Interannual and interdecadal anomaly features of siberian high andtheir impact on winter temperature of China. Plateau Meteorol. 2016;35(3):662-674. doi: 10.7522/j.issn.1000-0534.2016.00022

 

  1. Sun X, Wang P, Zhi H, Guo D. Analysis and comparison of several mongolian high circulation indicesand their relationship with temperature anomaly of China in winter. Plateau Meteorol. 2010;29(6):1493-1500.

 

  1. Sun G, Li Y, Li S. The differences in cloud vertical structures between active and break spells of the East Asian summer monsoon based on cloud sat data. Atmos Res. 2019;224:157-167. doi: 10.1016/j.atmosres.2019.03.035

 

  1. Sun G, Li Y, Lu J. Why is there a tilted cloud vertical structure associated with the Northward advance of the East Asian summer monsoon. Atmos Res. 2019;215:317-325. doi: 10.1016/j.atmosres.2018.09.013

 

  1. Zhong Z, He B, Chen HW, et al. Reversed asymmetric warming of sub-diurnal temperature over land during recent decades. Nat Commun. 2023;14(1):7189. doi: 10.1038/S41467-023-43007-6

 

  1. Zheng F, Yuan Y, Ding Y, et al. The 2020/21 extremely cold winter in China influenced by the synergistic effect of la niña and warm arctic. Adv Atmos Sci. 2021;39(4):546-552. doi: 10.1007/S00376-021-1033-Y

 

  1. Liu Y, Wu C, Jia R, Huang J. An overview of the influence of atmospheric circulation on the climate inarid and semi-arid region of Central and East Asia. Sci China Earth Sci. 2018;48(9):1141-1152. doi: 10.1007/s11430-017-9202-1

 

  1. Liu Y, Huang J, Shi G, et al. Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos Chem Physics. 2011;11(252):11455-11463. doi: 10.5194/acp-11-11455-2011

 

  1. Fang W, Yang C, Liu D, et al. Assessment of wind and solar power potential and their temporal complementarity in China’s northwestern provinces: Insights from ERA5 reanalysis. Energies. 2023;16(20):7109. doi: 10.3390/en16207109

 

  1. Lu H, Wang C, Li Q, Wiser R, Porter K. Reducing wind power curtailment in China: Comparing the roles of coal power flexibility and improved dispatch. Clim Policy. 2019;19(5):623-635. doi: 10.1080/14693062.2018.1546164

 

  1. Sun J, Wang Y, Yang X, Lu Z, He Y, Chao Q. Analysis of spatial and temporal variation character of climate risks of wind and solar. Electric Power. 2023;56(5):1-10. doi: 10.11930/j.issn.1004-9649.202211009

 

  1. Wu J, Yan Y. Projection and outlook of future wind energy and solar energy resources in China. Energy China. 2023;45(Z1):49-58. doi: 10.3969/j.issn.1003-2355.2023.01.008

 

  1. Xue-Jie G, Mei-Li W, Giorgi F. Climate change over china in the 21st century as simulated by Bcc_CSM1.1-RegCM4.0. Atmos Oceanic Sci Lett. 2013;6(5):381-386.

 

  1. Li D, Feng J, Dosio A, Qi J, Xu Z, Yin B. Historical evaluation and future projections of 100-m wind energy potentials over CORDEX-East Asia. J Geophys Res Atmos. 2020;125(15):e2020JD032874. doi: 10.1029/2020JD032874

 

  1. Jurasz J, Mikulik J, Dabek PB, Guezgouz M, Kaźmierczak B. Complementarity and ‘resource droughts’ of solar and wind energy in Poland: An ERA5- based analysis. Energies. 2021;14(4):1118. doi: 10.3390/EN14041118

 

  1. Puspitarini HD, François B, Zaramella M, Brown C, Borga M. The impact of glacier shrinkage on energy production from hydropower-solar complementarity in alpine river basins. Sci Total Environ. 2020;719:137488.doi: 10.1016/j.scitotenv.2020.137488

 

  1. Han S, Zhang L, Liu Y, et al. Quantitative evaluation method for the complementarity of wind-solar-hydro power and optimization of wind-solar ratio. Appl Energy. 2019;236:973-984. doi: 10.1016/j.apenergy.2018.12.059

 

  1. Guan X. Development and Utilization of Wind and Solar Energy. Beijing: China Meteorological Press; 2018. p. 84-200.

 

  1. Liu L, Wang Y, Wang Z, et al. Potential contributions of wind and solar power to China’s carbon neutrality. Res Conserv Recycl. 2022;180:106158. doi: 10.1016/J.RESCONREC.2022.106155

 

  1. Ekanayake P, Peiris AT, Jeevani JM, Jayasinghe W, Rathnayake U. Development of wind power prediction models for pawan danavi wind farm in Sri Lanka. Math Probl Eng. 2021;2021:893713. doi: 10.1155/2021/4893713
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing