Projected trends in extreme heat in Senegal from 2020 to 2080

Faced with the challenges that climate change poses to all human societies, adaptation is becoming a necessity for human survival. In this context, it is necessary to study the climatic phenomena that humans face and that are likely to impact various aspects of life. Therefore, this study sought to analyze the trend of heat waves in Senegal using data from the Coupled Model Intercomparison Project Phase 6 (CMIP6), Canadian Earth System Model Version 5. Three climate scenarios (Shared Socioeconomic Pathway [SSP]1-2.6, SSP2-4.5, and SSP5-8.5) were used, and the study focused on two future climate normals (2020 – 2050, 2050 – 2080). The study first spatialized the 95th percentile of minimum, mean, and maximum temperatures, then analyzed temperature anomalies with the Lamb index before studying the future trend using the Mann-Kendall test. The results obtained reflect an upward trend for all the variables in this study for the two periods combined but with a different level of significance. This increase is greater for minimum temperatures, with rises of 0.43°C for SS1-2.6, 1.06°C for SSP2-4.5, and 2.18°C for SSP5-8.5. In comparison, maximum temperatures rose by 0.50°C, 1.05°C, and 2.03°C, respectively, between the first and second periods. Mean temperatures followed the same dynamic, with 0.48°C for SSP1-2.6, 1.04°C for SSP2-4.5, and 2.16°C for SSP5-8.5. Given these findings, it is important to analyze the behavior of the other CMIP6 models in assessing heat waves in Senegal.

- Costello A, Abbasb M, Allen A, et al. Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet. 2009;373(9676):1693-1733. doi: 10.1016/s0140-6736(09)60935-1
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III. Geneva, Switzerland; 2014. Available from: https://www.ipcc.ch/ site/assets/uploads/2018/05/SYR_AR5_FINAL_full_ wcover.pdf [Last accessed on 2025 Mar 15].
- Sharma A, Goyal MK. Assessment of the changes in precipitation and temperature in Teesta River basin in Indian Himalayan Region under climate change. Atmos Res. 2019;231:104670. doi: 10.1016/j.atmosres.2019.104670
- Chen H, Zhao L, Cheng L, et al. Projections of heatwave-attributable mortality under climate change and future population scenarios in China. Lancet Reg Health West Pac. 2022;28:100582. doi: 10.1016/j.lanwpc.2022.100582
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013. Available from: https://www.ipcc.ch/site/assets/ uploads/2018/03/wg1ar5_summaryvolume_final.pdf [Last accessed on 2025 Mar 17].
- Das J, Umamahesh NV. Heat wave magnitude over India under changing climate: Projections from CMIP5 and CMIP6 experiments. Int J Clim. 2021;42(1):331-351. doi: 10.1002/joc.7246
- Perkins SE, Alexander LV, Nairn JR. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett. 2012;39:L20714. doi: 10.1029/2012GL053361
- Zeng Q, Li GX, Cui YS, Jiang GH, Pan XC. Estimating temperature-mortality exposure-response relationships and optimum ambient temperature at the multicity level of China. Int J Environ Res Public Health. 2016;13(3):279.
- Ringard J, Dieppois B, Rome S, et al. Evolution des pics de Températures en Afrique de l’Ouest: Étude comparative entre Abidjan et Niamey. p. 231- 237. Available from: https://www.researchgate. net/publication/260176381_evolution_des_pics_ de_temperatures_en_afrique_de_l’ouest_etude_ comparative_entre_abidjan_et_niamey [Last accessed on 2025 Mar 15].
- World Meteorological Organization and World Health Organization. Heat Waves and Health: Guidance on Warning-System Development. WMO-No; 2015. Available from: https://cdn.who.int/media/docs/ default-source/climate-change/heat-waves-and-health---guidance-on-warning-system-development. pdf?sfvrsn=e4813084_2&download=true [Last accessed on 2025 Mar 12].
- Watts N, Adger WN, Agnolucci P, et al. Health and climate change: Policy responses to protect public health. Lancet. 2015;386(10006):1861-1914. doi: 10.1016/s0140-6736(15)60854-6
- World Health Organization. World Health Statistics 2017: Monitoring Health for the SDGs, Sustainable Development Goals. WHO; 2017. Available from: https://iris.who.int/ bitstream/handle/10665/255336/9789241565486-eng. pdf?sequence=1&isAllowed=y [Last accessed on 2025 Mar 12].
- FAO. L’impact des Catastrophes Sur L’agriculture et la Sécurité Alimentaire Prévenir et Réduire Les Pertes En Investissant Dans la Résilience; 2023. Available from: https://openknowledge.fao.org/server/api/core/ bitstreams/2580a391-043a-45c8-9537-3eb7f8b485fe/ content [Last accessed on 2025 Mar 17].
- Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing climate change adaptation needs for food security in 2030. Science. 2008;319(5863):607610. doi: 10.1126/science.1152339
- Chakraborty DS, Tiedemann A, Teng P. Climate change: Potential impact on plant disease. Environ Pollut. 2000;108:317326. doi: 10.1016/S0269-7491(99)00210-9
- Diouf NS. Évolution Spatio-temporelle des Vagues de Chaleur en Afrique de l’Ouest et Risques Sanitaires Associes. Mémoire de Master, Physiques et Applications, Sciences de l’Atmosphère et de l’Ocean.UASZ; 2018. Available from: https://rivieresdusud.uasz.sn/xmlui/ bitstream/handle/123456789/955/diouf_memoire_2018. pdf?sequence=1&isAllowed=y [Last accessed on 2025 Mar 08].
- Bodian A, Diop L, Panthou G, et al. Recent trend in hydroclimatic conditions in the senegal river basin. Water. 2020;12(2):436. doi: 10.3390/w12020436
- Ndiaye PM. Evaluation, Calibration et Analyse des Tendances Actuelles et Futures de L’évapotranspiration de Référence dans le Bassin du FLEUVE SÉNÉGAL. UGB; 2021. Available from: https://cda-omvs.org/ wp-content/uploads/2016/06/13680_evaluation-calibration-et-analyse-des-tendances-actuelles-et-futures-evapotranspirations-BFS.pdf [Last accessed on 2025 Mar 08].
- Eyring V, Bony S, Meehl GA, et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organisation. Geosci Model Dev Disc. 2016;9(5):1937-1958. doi: 10.5194/gmd-9-1937-2016
- Hirsch AL, Ridder NN, Perkins‐Kirkpatrick SE, Ukkola A. CMIP6 multimodel evaluation of present‐day heatwave attributes. Geophys Res Lett. 2021;48:1-11. doi: 10.1029/2021GL095161
- Toure M, Thiaw WM, Sy I, et al. Machine learning‐based prediction of heatwave‐related hospitalizations: A case study in Matam, Senegal. Public Health. 2025;3:1-26. doi: 10.20944/preprints202503.1797.v1
- Sow M, Gaye D, Diakhate MM. Analysis of the spatiotemporal evolution of the trend of extreme heat in Senegal. Vertigo. 2024;24(2):1-21. doi: 10.4000/12jq1
- Sow M, Gaye D, Diakhate MM. Analysis of the spatiotemporal evolution of the trend of extreme heat in Senegal. Vertigo. 2024;24(2):1-21. doi: 10.4000/12jq1
- Sow M, Gaye D. Categorization and multi-criteria analysis of heat wave vulnerability in Senegal. J Water Clim Change. 2024;15(11):53825396. doi: 10.2166/wcc.2024.090
- Sy I, Cissé B, Ndao B, et al. Heat waves and health risks in the northern part of Senegal: Analysing the distribution of temperature-related diseases and associated risk factors. Environ Sci Pollut Res. 2022;29(55):8336583377. doi: 10.1007/s11356-022-21205-x
- Gaye AT, Lo HM, Sakho-Djimbira S, Fall MS, Ndiaye I. Senegal: Revue du contexte Socioeconomique, Politique et Environnemental. IED, PRESA; 2015. Available from: https://www.iedafrique.org/img/pdf/revue_resilience_ croissance_et_changement_climatique_au_senegal-2. pdf [Last accessed on 2025 Mar 15].
- Wade CT, Toure O, Diop M. Gestion des Risques Climatiques. IED, PRESA; 2015. Available from: https:// www.iedafrique.org/img/pdf/revue_thematique_2015. pdf [Last accessed on 2025 Mar 15].
- Bodian A. Characterization of recent temporal variability of annual rainfall in Senegal (West Africa). Physio Geo Environ. 2014;8:297-312. doi: 10.4000/physio-geo.4243
- Yade M, Sagna P, Sambou P. Migrations de l’Equateur Meteorologique et Precipitations au Senegal en 2008 et 2009. 25ème Colloque Ass Int de Cli. p. 781- 786. Available from: https://www.researchgate.net/ publication/331232160_migrations_de_l’equateur_ meteorologique_et_precipitations_au_senegal_ en_2008_et_2009 [Last accessed on 2025 Mar 12].
- Ndiaye PM, Gaye D, Sow SA. Spatio-temporal characterization and analysis of temperature trends in Senegal. Eur Sci J. 2020;16(33):105-121. doi: 10.19044/esj.2020.v16n33p105
- Bigot S, Dumas D, Brou YT, et al. Projections climatiques CMIP6 à l’echelle du sud-est de la cote d’ivoire: Evolution des contraintes thermo-pluviometriques pour les principaux Agrosystèmes associant cacao, hevea, palmier à huile et manioc. Conference: 35ème Colloque Annuel de l’Association Internationale de Climatologie – AIC 2022At: Toulouse; 2022. p. 60-66. Available from: https://agritrop.cirad.fr/606582/1/ID606582.pdf [Last accessed on 2025 Mar 08].
- Mmame B, Ngongondo C. Evaluation of CMIP6 model skills in simulating tropical climate extremes over Malawi, Southern Africa. Model Earth Syst Environ. 2024;10(2):16951709. doi: 10.1007/s40808-023-01867-3
- Wang D, Xu T, Fang G, et al. Characteristics of marine heatwaves in the Japan/East Sea. Remote Sens. 2022;14(4):936. doi: 10.3390/rs14040936
- Ajibola FO, Zhou B, Shahid S, Ali MA. Performance of CMIP6 HighResMIP simulations on West African Drought. Front Earth Sci. 2022;10:925358. doi: 10.3389/feart.2022.925358
- Akinsanola AA, Kooperman GJ, Pendergrass AG, Hannah WM, Reed KA. Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environ Res Lett. 2020;15(9):094003. doi: 10.1088/1748-9326/ab92c1
- Ha K, Moon S, Timmermann A, Kim D. Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys Res Lett. 2020;47(8):e2020GL087492. doi: 10.1029/2020GL087492
- Jeong DI, Cannon AJ, Yu B. Influences of atmospheric blocking on North American summer heatwaves in a changing climate: A comparison of two Canadian Earth system model large ensembles. Clin Change. 2022;172(5):1-21. doi: 10.1007/s10584-022-03358-3#citeas
- Neal E, Huang CS, Nakamura N. The 2021 Pacific Northwest heat wave and associated blocking: Meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys Res Lett. 2022;49(8):e2021GL097699. doi: 10.1029/2021GL097699
- Arora VK, Scinocca JF, Boer GJ, et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett. 2011;38(5):1-6. doi: 10.1029/2010GL046270
- Brunner L, Schaller N, Anstey J, Sillmann J, Steiner AK. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys Res Lett. 2018;45(12):6311-6320. doi: 10.1029/2018GL077837
- Schaller N, Sillmann J, Anstey J, Fischer EM, Grams CM, Russo S. Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environ Res Lett. 2018;13(5):054015. doi: 10.1088/1748-9326/aaba55
- Dehban H, Zareian MJ, Gohari A. Evaluating regional climate change during 2021-2080 for Iran and neighboring countries (a comparative analysis of projections and reanalysis data). Theor Appl Climatol. 2025;156:143. doi: 10.1007/s00704-025-05381-7
- Zareian MJ, Dehban H, Gohari A, Torabi HA. Assessment of CMIP6 models performance in simulation precipitation and temperature over Iran and surrounding regions. Environ Monit Assess. 2024;196:701. doi: 10.1007/s10661-024-12878-7
- Da Silva ASA, Stosic B, Menezes RSC, Singh VP. Comparison of interpolation methods for spatial distribution of monthly precipitation in the State of Pernambuco, Brazil. J Hydrol Eng. 2019;24:3. doi: 10.1061/(ASCE)HE.1943-5584.0001743
- Teegavarapu RSV, Meskele T, Pathak CS. Geo-spatial grid-based transformations of precipitation estimates using spatial interpolation methods. Comp Geosci. 2012;40:2839. doi: 10.1016/j.cageo.2011.07.004
- Jones PA User’s Guide for SCRIP: A Spherical Coordinate Remapping and Interpolation Package, Version 1.4. The Regents of the University of California. Available from: https://oasis.cerfacs.fr/wp-content/ uploads/sites/114/2021/03/globc_scripusers_1998.pdf [Last accessed on 2025 Mar 15].
- Kim KH, Shim PS, Shin S. An alternative bilinear interpolation method between spherical grids. Atmosphere. 2019;10(3):123. doi: 10.3390/atmos10030123
- Goudiaby O, Bodian A, Dezetter A, Diouf I, Ogilvie A. Evaluation of gridded rainfall products in three West African Basins. Hydrology. 2024;11(6):75. doi: 10.3390/hydrology11060075
- Bodian A, Ndiaye PM, Diop SB, et al. Evaluation and calibration of alternative methods for estimating reference evapotranspiration in the main hydrosystems of Senegal: Senegal, Gambia and Casamance River Basins. Proc IAHS. 2024;385:415421. doi: 10.5194/piahs-385-415-2024
- Saley MB, Tanoh R, Kouame KF, et al. Variabilite Spatio-temporelle de la Pluviometrie et son Impact Sur les Ressources En Eaux Souterraines: Cas du district d’Abidjan (Sud de la Côte d’Ivoire). University de Cocody; 2009. Available from: https://www.sifee.org/client_ file/upload/colloques%20documentation/2009%20 niamey/3_saley_comm.pdf [Last accessed on 2025 Mar 12].
- Faye C, Ba Djibrirou D, Diedhiou SO. The anomaly of the minimum and maximum temperature in the south-eastern part of Senegal. J Sci Res Univ Lome. 2019;21(4-1):27-37. doi: 10.12691/ajfn-13-2-2
- Kendall MG. Rank Correlation Methods. 4th ed. London, U.K: Charles Griffin; 1975.
- Mann HB. Nonparametric tests against trend. Econometrica. 1945;13:245-259. doi: 10.2307/1907187
- Braud I. Methodologies D’analyse de Tendances sur de Longues Series Hydrometeorologiques. Fiche Technique Othu N 2; 2011. Available from: https://hal.inrae.fr/hal- 02595255v1/document [Last accessed on 2025 Mar 08].
- Ringard J, Chiriaco M, Bastin S, Habets F. Recent trends in climate variability at the local scale using 40 years of observations: The case of the Paris region of France. Atmos Chem Phys. 2019;19(20):13129-13155. doi: 10.5194/acp-19-13129-2019
- Sagna P, Ndiaye O, Diop C, Niang AD, Sambou PC. Les variations recentes du climat constatees au Senegal sont-elles en phase avec les descriptions donnees par les scenarios du GIEC? Pollut Atmos. 2015;227:1-17. doi: 10.4267/pollution-atmospherique.5320
- Ringard J. Etude Rétrospective et Prospective des Vagues de Chaleur en Afrique de l’Ouest. University Jos Four, Gre. Available from: https://www.researchgate. net/profile/justine-ringard/publication/260018793_ e t u d e _ r e t r o s p e c t i v e _ e t _ p r o s p e c t i v e _ d e s_ vagues_de_chaleur_en_afrique_de_l%27ouest/ links/02e7e52f12bf345bcd000000/etude-retrospective-et-prospective-des-vagues-de-chaleur-en-afrique-de-louest.pdf [Last accessed on 2025 Mar 08].
- Stone DA, Weaver AJ. Daily maximum and minimum temperature trends in a climate model. Geoph Res Lett. 2002;29(9): 70-1-70-4. doi: 10.1029/2001GL014556
- Braganza K, Karoly DJ, Arblaster JM. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Res Lett. 2004;31(13):1-4. doi: 10.1029/2004GL019998
- Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. Climate extremes: Observations, modeling, and impacts. Science. 2000;289(5487):2068-2074. doi: 10.1126/science.289.5487.2068
- Hartmann DL, Tank AMK, Rusticucci M, et al. Observations: Atmosphere and Surface. Cambridge United Kingdom and NY, USA: Cambridge University Press; 2013. p. 195-254. Available from: https://www. ipcc.ch/site/assets/uploads/2017/09/wg1ar5_chapter02_ final.pdf [Last accessed on 2025 Mar 08].
- Trigo RM, García‐Herrera R, Díaz J, Trigo IF, Valente MA. How exceptional was the early August 2003 heatwave in France? Geophys Res Lett. 2005;32(10):L10701. doi: 10.1029/2005GL022410open_in_new
- Rome S, Caniaux G, Ringard J, Dieppois B, Diedhiou A. Identification de Tendances Recentes et Ruptures D’homogeneite des Temperatures: Exemple en Afrique de l’Ouest et sur le Golfe de Guinee. In: 28ème Colloquim Internationale de l’AIC, Liège, Belgium; 2015. p. 591-596.
- Barbier J. Extrêmes Climatiques: Les Vagues de Chaleur au Printemps Sahelien. Universoty de Toul. Available from: https://theses.hal.science/tel-04225047v1/document [Last accessed on 2025 Mar 12].
- Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st Century. Science. 2004;305(5686):994‐997. doi: 10.1126/science.1098704