AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025060032
ORIGINAL RESEARCH ARTICLE

Natural radioactivity and radiation risks of soils in Ali Al-Sharqi and Kumait, Iraq

Zahraa A. Ismail AL-Sudani1* Sawsan Sherif2 Mazin Mohammed3
Show Less
1 Department of Physics, College of Science, University of Misan, Misan, Iraq
2 Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
3 Radiation Protection Center, Ministry of Environment, Baghdad, Iraq
Submitted: 3 February 2025 | Revised: 30 March 2025 | Accepted: 31 March 2025 | Published: 16 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Humans are subjected to natural radiation from external sources, such as radionuclides on Earth and cosmic radiation, as well as internal radiation from radionuclides integrated into the body. Radionuclide intake occurs mostly through the ingestion of food and water, as well as inhalation. The natural radioactivity in the soils of Ali Al-Sharqi and Kumait, two cities in Misan province, Iraq, were measured. The soil samples were collected from 47 Ali Al-Sharqi and Kumait areas, and levels of natural radionuclide were analyzed using a high-purity germanium detector. The average activity concentrations of radionuclides, radium-226, thorium-232, and potassium-40, were found to be 15.1 ± 2.5, 14.7 ± 2.4, and 180.8 ± 7.9 Bq/kg, respectively, for Ali Al-Sharqi. In Kumait, the corresponding values were 13.6 ± 2.1, 17.2 ± 2.4, and 193.6 ± 8.6 Bq/kg, respectively. Radiation risk parameters were also evaluated for both cities. The average radium equivalent activities for Ali Al-Sharqi and Kumait were 50.2 Bq/kg and 53.2 Bq/kg, respectively. Internal and external hazard indices were 0.2 and 0.1, while the gamma level index was 0.2 in both cities. In Ali Al-Sharqi, the absorbed gamma dose rates in the air (Din, Dout, and Dtot) were 44.8, 23.5, and 68.3 nGy/h, the annual effective dose equivalents (AEDEin, AEDEout, and AEDEtot) were 0.2, 0.02, and 0.2 mSv/y, the excess lifetime cancer risks (ELCRin, ELCRout, and ELCRtot) were 0.8 × 10−3, 0.1 × 10−3, and 0.9 × 10−3, and the annual gonadal dose equivalent was 165.3 μSv/y. In Kumait, the corresponding values were 47.2, 24.8, and 72 nGy/h, 0.2, 0.03, and 0.3 mSv/y, 0.8 × 10−3, 0.1 × 10−3, and 0.9 × 10−3, and 175 μSv/y, respectively. These findings indicate that the measured levels of radioactivity and health hazard parameters in both cities were below the global average values reported by the United Nations Scientific Committee on the Effects of Atomic Radiation. Therefore, the natural radioactivity in the soils of the investigated areas does not pose a health risk to the public.

Keywords
Soil
Radionuclides
High-purity germanium
Dose rate
Ali Al-Sharqi
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. UNSCEAR. Effects of Ionizing Radiation. New York: United Nations; 2000. p. 453-487.

 

  1. Banerjee KS, Guin R, Gutierrez-Villanueva JL, Charro ME, Sengupta D. Variation in u-238 and th-232 enrichment in u-mineralized zone and geological controls on their spatial distribution, Singhbhum shear zone of India. J Environ Earth Sci. 2012;65:2103-2110. doi: 10.1007/s12665-011-1191-9

 

  1. Otansev P, Karahan G, Kam E, Barut I, Taskin H. Assessment of natural radioactivity concentrations and gamma dose rate levels in Kayseri, Turkey. Radiat Prot Dosimetry. 2012;148(2):227-236. doi: 10.1093/rpd/ncr023

 

  1. Rahman S, Matiullah MF, Rafique M, Anwar J, Ziafat M. Measurement of naturally occurring/fallout radioactive elements and assessment of annual effective dose in soil samples collected from four districts of the Punjab province, Pakistan. J Radioanal Nucl Chem. 2011;287(2):647-655. doi: 10.1007/s10967-010-0819-7

 

  1. Kassa MK, Deressu TT. Measurement of natural radioactivity levels and evaluation of radiological hazard risks in areas of eastern coastline sediments of Lake Hawassa in Ethiopia’s Sidama Region. J Phys. 2023;9(4):1819-1837. doi: 10.22059/poll.2023.357027.1843

 

  1. Hameed PS, Pillai GS, Satheeshkumar G, Mathiyarasu R. Measurement of gamma radiation from rocks used as building material in Tiruchirappalli District, Tamil Nadu, India. J Radiat Nucl Chem. 2014;300:1081-1088. doi: 10.1007/s10967-014-3033-1

 

  1. Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V. Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot. 2011;69(1):184-195. doi: 10.1016/j.apradiso.2010.07.020

 

  1. Rani A, Singh S. Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry. Atmos Environ. 2005;39(34):6306-6314. doi: 10.1016/j.atmosenv.2005.07.050

 

  1. Al-Jundi J, Al-Bataina B, Abu-Rukah Y, Shehadeh HM. Natural radioactivity concentrations in soil samples along the Amman Aqaba Highway, Jordan. Radiol Meas. 2003;36(1-6):555-560. doi: 10.1016/S1350-4487(03)00202-6

 

  1. Kurnaz A, Küçükömeroğlu B, Keser R, et al. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl Radiat Isot. 2007;65(11):1281-1289. doi: 10.1016/j.apradiso.2007.06.001

 

  1. Harb SRM, Din KS, Abbady AE, Mohamed AEE, Michel R. Measurements of natural radionuclides in soil samples from Upper Egypt. Nucl Sci Technol. 2008;19(5):302-307. doi: 10.1016/S1001-8042(09)60008-7

 

  1. Ajayi OS. Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the SouthWestern region of Nigeria. Radiat Environ Biophys. 2009;48:323-332. doi: 10.1007/s00411-009-0225-0

 

  1. El Samad O, Baydoun R, Nsouli B, Darwish T. Determination of natural and artificial radioactivity in soil at North Lebanon province. J Environ Radioact. 2013;125:36-39. doi: 10.1016/j.jenvrad.2013.02.010

 

  1. Lanzo G, Rizzo S, Tomarchio E. A radiometric and petrographic approach to risk assessment at alte madonie mounts region (Sicily, Italy). Radiat Prot Dosimetry. 2014;158(4):427-434. doi: 10.1093/rpd/nct245

 

  1. Attia TE, Shendi EH, Shehata MA. Assessment of natural and artificial radioactivity levels and radiation hazards and their relation to heavy metals in the industrial area of port said city, Egypt. Environ Sci Pollut Res Int. 2015;22:3082-3097. doi: 10.1007/s11356-014-3453-z

 

  1. Haribala, Hu B, Wang C, et al. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China. Ecotoxicol Environ Saf. 2016;130:185-192. doi: 10.1016/j.ecoenv.2016.04.002

 

  1. Mustafa MI, Yazici NA, Mangur PH. The investigation of terrestrial radioactivity in soil samples around pshdar region in Iraqi-Kurdistan. Zanco J Pure Appl Sci. 2016;28(6):13-20. doi: 10.21271/ZJPAS.28.6.3

 

  1. Nafee S, Al-Othmany D, Hamidalddin S, Al-Zahrani J, Alharbi W, Barashed H. Measurement of gamma emitting radionuclides for assessment, environmental hazards of radiation in rock and soil samples of Shabwah and Hadramout regions, Yemen. J Geosci Environ Protect. 2017;5(5):66-75. doi: 10.4236/gep.2017.55005

 

  1. Najam LA, Salim KM, Khalid HT. Evaluation of natural radioactivity of soil samples from different regions of wassit governorate. Pollution. 2017;3(1):47-53. doi: 10.7508/pj.2017.01.006

 

  1. Taqi AH, Shaker AM, Battawy AA. Natural radioactivity assessment in soil samples from Kirkuk city of Iraq using HPGe detector. Int J Radiat Res. 2018;16(4):455-463. doi: 10.18869/acadpub.ijrr.16.4.455

 

  1. Mouandza SYL, Moubissi AB, Abiama PE, Ekogo TB, Ben-Bolie GH. Study of natural radioactivity to assess of radiation hazards from soil samples collected from Mounana in South-East of Gabon. Int J Radiat Res. 2018;16(4):443-453. doi: 10.18869/acadpub.ijrr.16.4.443

 

  1. Ribeiro FCA, Silva JIR, Lima ESA, Do Amaral Sobrinho NMB, Perez DV, Lauria DC. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Res. 2018;182:34-43. doi: 10.1016/j.jenvrad.2017.11.017

 

  1. Bajoga AD, Al-Dabbous AN, Abdullahi AS, Alazemi NA, Bachama YD, Alaswad SO. Evaluation of elemental concentrations of uranium, thorium and potassium in top soils from Kuwait. Nucl Eng Environ Technol. 2019;51(6):1638-1649. doi: 10.1016/j.net.2019.04.021

 

  1. Khan UI, Qin Z, Xie T, et al. Evaluation of health hazards from radionuclides in soil and rocks of North Waziristan, Pakistan. Int J Radiat Res. 2020;18(2):243-253. doi: 10.18869/acadpub.ijrr.18.2.243

 

  1. Aydarous AS, Zeghib S, Abdullahi S, Al-Subaie H. Radiological hazard assessment and sensitivity analysis for soil samples in Taghdoua area of Ranyah, Saudi Arabia. J Radiol Res Appl Sci. 2022;15(2):119-128. doi: 10.1016/j.jrras.2022.05.006

 

  1. De Regge P, Burns K, Danesi PR. The IAEA programme and perspectives for environmental radionuclide monitoring and preparation of reference materials. Czech J Phys. 1999;49:237-245. doi: 10.1007/s10582-999-0032-5

 

  1. Dizman S, Görür FK, Keser R, Görür O. The assessment of radioactivity and radiological hazards in soils of Bolu province, Turkey. Environ Forensics. 2019;20(3):211-218. doi: 10.1080/15275922.2019.1629129

 

  1. Beretka J, Mathew PJ. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985;48(1):87-95. doi: 10.1097/00004032-198501000-00007

 

  1. Smail JM, Ahmad ST, Mansour HH. Estimation of the natural radioactivity levels in the soil along the Little Zab River, Kurdistan Region in Iraq. J Radiol Nucl Chem. 2022;331(1-10):119-128. doi: 10.1007/s10967-021-08064-5

 

  1. Krieger RJ. Radioactivity of construction materials. World J Nucl Sci Technol. 1981;47(8):468-473. doi: 10.1016/S0160-3450(16)31258-2

 

  1. Yadav M, Rawat M, Dangwal A, Prasad M, Gusain GS, Ramola RC. Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya. J Radioanal Nucl Chem. 2014;302:869-873. doi: 10.1007/s10967-014-3277-9

 

  1. Mountford PJ, Temperton DH. Recommendations of the international commission on radiological protection (ICRP) 1990. Eur J Nucl Med. 1992;19:77-79. doi: 10.1007/BF00184120

 

  1. Suresh S, Rangaswamy DR, Sannappa J, Dongre S, Srinivasa E, Rajesh S. Estimation of natural radioactivity and assessment of radiation hazard indices in soil samples of Uttara Kannada district, Karnataka, India. J Radiat Nucl Chem. 2022;331(4):1869-1879. doi: 10.1007/s10967-021-08145-5

 

  1. European Commission. Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Radiation Protection No. 112. Luxembourg: Publications of the European Communities; 1999.

 

  1. Temelli UE. Determination of natural radioactivity levels of concrete core and cements in Eskisehir Area. Fresenius Environ Bull. 2018;27:2717-2723.

 

  1. Asaduzzaman K, Khandaker MU, Amin YM, Bradley DA. Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh. Indoor Built Environ. 2016;25(3):541-550. doi: 10.1177/1420326X14562048

 

  1. Ravisankar R, Chandramohan J, Chandrasekaran A, et al. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar Pollut Bull. 2015;97(1-2):419-430. doi: 10.1016/j.marpolbul.2015.05.058

 

  1. Sukumaran Chettiar Rajamma S, Abraham S, Panakal John J. Gamma radiation profile of the high background radiation area along southwest coastal India and its neighbourhood. Pollution. 2023;9(4):1867-1879. doi: 10.22059/poll.2023.360416.1937

 

  1. Mohammed RS, Ahmed RS. Estimation of excess lifetime cancer risk and radiation hazard indices in Southern Iraq. Environ Earth Sci. 2017;76:303. doi: 10.1007/s12665-017-6616-7

 

  1. Ugbede FO, Okoye ONN, Akpolile AF, Oladele BB. Baseline radioactivity in the soil of evangel take-off campus, evangel university, Nigeria, and its associated health risks. Chem Africa. 2021;4(3):703-713. doi: 10.1007/s42250-021-00254-8

 

  1. Agar O, Boztosun I, Korkmaz ME, Özmen SF. Measurement of radioactivity levels and assessment of radioactivity hazards of soil samples in Karaman, Turkey. Radiat Prot Dosimetry. 2014;162(4):630-637. doi: 10.1093/rpd/ncu027

 

  1. Wang Z, Ye Y. Assessment of soil radioactivity levels and radiation hazards in Guangyao Village, South China. J Radiochem Nucl Chem. 2021;329:679-693. doi: 10.1007/s10967-021-07818-5

 

  1. Al-Ghamdi AH. Health risk assessment of natural background radiation in the soil of Eastern Province, Saudi Arabia. J Radiat Res Sci. 2019;12(1):219-225. doi: 10.1080/16878507.2019.1637045

 

  1. Al-Alawy IT, Taher WI, Mzher OA. Soil radioactivity levels, radiation hazard assessment and cancer risk in Al-Sadr City, Baghdad Governorate, Iraq. Int J Radiat Res. 2023;21(2):293-298.

 

  1. Boukhenfouf W, Boucenna A. The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. J Environ Radioact. 2011;102(4):336-339. doi: 10.1016/j.jenvrad.2011.01.006

 

  1. Almayahi BA, Tajuddin AA, Jaafar MS. Radiation hazard indices of soil and water samples in Northern Malaysian Peninsula. Appl Radiat Isot. 2012;70(11):2652-2660. doi: 10.1016/j.apradiso.2012.07.021

 

  1. Harb S, El-Kamel AEH, Abbady AEB, Saleh EE, El-Mageed AI. Specific activities of natural rocks and soils at quaternary intraplate volcanism north of Sana’a, Yemen. J Med Pharmacol. 2012;37(1):54-60. doi: 10.4103/0971-6203.92721

 

  1. Kardan MR, Fathabdi N, Attarilar A, et al. A national survey of natural radionuclides in soils and terrestrial radiation exposure in Iran. J Environ Radioact. 2017;178:168-176. doi: 10.1016/j.jenvrad.2017.08.010

 

  1. Tufan MÇ, Bostancı S. Radioactivity concentrations in soil and dose assessment for Samsun City Centre, Turkey. Radiat Prot Dosimetry. 2012;151(3):532-536. doi: 10.1093/rpd/ncs034

 

  1. Al-Hamarneh IF, Awadallah MI. Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan. Radiat Meas. 2009;44(1):102-110. doi: 10.1016/j.radmeas.2008.11.005

 

  1. Hussein ZA. Assessment of natural radioactivity levels and radiation hazards for soil samples used in Erbil Governorate, Iraqi Kurdistan. ARO Sci J Koya Univ. 2019;7(1):34-39. doi: 10.14500/aro.10471

 

  1. Mohammed NA, Ebrahiem SA. Radioactivity levels of 238U, 234Th, 40K and 137C in the soil surface of selected regions from Baghdad Governorate. J Nucl Eng Sci. 2020;14(1):15-27. doi: 10.1504/ijnest.2020.108794

 

  1. Faghihi R, Mehdizadeh S, Sina S. Natural and artificial radioactivity distribution in soil of Fars Province, Iran. Radiat Prot Dosimetry. 2011;145(1):66-74. doi: 10.1093/rpd/ncq367

 

  1. Muhammed MI, Najim Y, Mangur P. The Investigation of Terrestrial Radioactivity in Soil Samples around Pshdar Region in Iraqi-Kurdistan. ZANCO J Pure and Appl Sci. 2016;28(6):13-20.

 

  1. Saleh, H, Shayeb MA. Natural radioactivity distribution of southern part of jordan (Maan) Soil. Ann Nucl Energy. 2014;65:184-9. doi: 10.1016/j.anucene.2013.10.042
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing