Integrated modeling of socioeconomic and hydrological factors for adaptive drought response in the Kowsar Dam basin, Iran

The agricultural sector faces major challenges from increasing droughts and declining water resources, especially in arid and semi-arid areas. The present study aims to simulate the effects of drought on socioeconomic, hydrological, and adaptive behavioral parameters at the basin level to identify drought-vulnerable areas and improve agricultural sector management under drought conditions. This study integrates water evaluation and planning, positive mathematical programming, and theory of planned behavior models to analyze hydrological, socioeconomic, and behavioral systems, respectively, under drought scenarios. To implement this integrated model, the Kowsar Dam basin in Iran was selected as the study area. The results showed that droughts significantly reduce crop yields, increase unmet water demand, alter cultivation patterns, and lower farmers’ profits, all driven by reduced rainfall, higher temperatures, and shrinking water resources. Attitudes, norms, and perceived control explained 74.1% of behavioral intention and 58.6% of farmers’ drought responses. Therefore, influencing psychological parameters can help foster the acceptance of drought adaptation strategies at the basin level. In conclusion, this integrated framework serves as a valuable tool for identifying drought-vulnerable areas and designing effective policies and interventions for drought management.
- Ado AM, Leshan J, Savadogo P, Bo L, Shah AA. Farmers’ awareness and perception of climate change impacts: Case study of Aguie district in Niger. Environ Dev Sustain. 2019;21(6):2963-2977. doi: 10.1007/s10668-018-0173-4
- Mirzaei A, Azarm H, Yazdanpanah M, Najafabadi MM. Socio-economic, social-capital, and psychological characteristics and climate change adaptive behavior of farmers in Iran. Clim Res. 2022;87:1-12. doi: 10.3354/cr01683
- Udmale P, Ichikawa Y, Manandhar S, Ishidaira H, Kiem AS. Farmers’ perception of drought impacts, local adaptation and administrative mitigation measures in Maharashtra State, India. Int J Disaster Risk Reduct. 2014;10:250-269. doi: 10.1016/j.ijdrr.2014.09.011
- Bento VA, Gouveia CM, DaCamara CC, Trigo IF. A climatological assessment of drought impact on vegetation health index. Agric For Meteorol. 2018;259:286-295. doi: 10.1016/j.agrformet.2018.05.014
- Ngondjeb YD. Agriculture and climate change in Cameroon: An assessment of impacts and adaptation options. Afr J Sci Technol Innov Dev. 2013;5(1):85-94. doi: 10.1080/20421338.2013.782151
- Pakmehr S, Yazdanpanah M, Baradaran M. How collective efficacy makes a difference in responses to water shortage due to climate change in southwest Iran. Land Use Policy. 2020;99:104798. doi: 10.1016/j.landusepol.2020.104798
- Wilhite DA, Svoboda MD, Hayes MJ. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour Manag. 2007;21(5):763-774. doi: 10.1007/s11269-006-9076-5
- Eliasson J. The rising pressure of global water shortages. Nature. 2015;517(7532):6. doi: 10.1038/517006a
- Li M, Fu Q, Singh VP, Ma M, Liu X. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions. J Hydrol. 2017;555:80-94. doi: 10.1016/j.jhydrol.2017.09.055
- Lu H, Li J, Ren L, Chen Y. Optimal groundwater security management policies by control of inexact health risks under dual uncertainty in slope factors. Chemosphere. 2018;198:161-173. doi: 10.1016/j.chemosphere.2018.01.121
- Mirzaei A, Azarm H, Naghavi S. Optimization of cropping pattern under seasonal fluctuations of surface water using multistage stochastic programming. Water Supply. 2022;22(6):5716-5728. doi: 10.2166/ws.2022.224
- Mirzaei A, Zibaei M. Water conflict management between agriculture and wetland under climate change: Application of economic-hydrological-behavioral modelling. Water Resour Manag. 2021;35(1):1-21. doi: 10.1007/s11269-020-02703-4
- Edwards, B., Gray, M., Hunter, B. The social and economic impacts of drought. Aust J Soc Issues. 2019;54(1):22-31. doi: 10.1002/ajs4.52
- Bruinsma J. World Agriculture: Towards 2015/2030: An FAO Perspective. UK: Routledge; 2017.
- Hadizadeh F, Allahyari MS, Damalas CA, Yazdani MR. Integrated management of agricultural water resources among paddy farmers in Northern Iran. Agric Water Manag. 2018;200:19-26. doi: 10.1016/j.agwat.2017.12.031
- Mardani Najafabadi M, Mirzaei A, Azarm H, Nikmehr S. Managing water supply and demand to achieve economic and environmental objectives: Application of mathematical programming and ANFIS models. Water Resour Manag. 2022;36(9):3007-3027. doi: 10.1007/s11269-022-03178-1
- Yazdanpanah M, Forouzani M., Abdeshahi A, Jafari A. Investigating the effect of moral norm and self-identity on the intention toward water conservation among Iranian young adults. Water Policy. 2016;18(1):73-90. doi: 10.2166/wp.2015.031
- D’Odorico P, Carr J, Dalin C, et al. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts. Environ Res Lett. 2019;14(5):053001. doi: 10.1088/1748-9326/ab05f4
- Khalili D. Challenges facing water resources management under drought conditions in Iran. Strateg Res J Agric Sci Nat Resour. 2016;1(2):149-164. doi: 10.22047/SRJASNR.2016.110542
- National Climate Change Office. Iran Second National Communication to UNFCC. National Climate Change Office at the Department of Environment on Behalf of the Government of the Islamic Republic of Iran; 2010.
- Nazari MR. The economic impacts of climate change on Iranian agricultural sector. In: Technical Workshop of Investigating Climate Change Related Challenges and Implementing the United Nations Framework Convention on Climate Change in Iran, Tehran; 2015. (In Persian)
- Sadeghi SH, Moghadam ES, Delavar M, Zarghami M. Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale. Agric Water Manag. 2020;233:106071. doi: 10.1016/j.agwat.2020.106071
- Ashraf Vaghefi S, Mousavi SJ, Abbaspour KC, Srinivasan R, Yang H. Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrol Processes. 2014;28(4):2018-2032. doi: 10.1002/hyp.9747
- Mirzaei A, Zibaei M. Investigation of adaptation strategies for agricultural water resources management under climate change in Halil-rud river basin. J Agric Econ Dev. 2021;34(4):397-419. (In Persian)
- Ashofteh PS, Bozorg Haddad O, Massah Bavani A. Impact of climate change on water requirement of Aidoghmoush irrigation network. In: 21st International Congress on Irrigation and Drainage. New Delhi: International Commission on Irrigation and Drainage; 2011. (In Persian)
- Maddah V, Soltani A, Zeinali E, Bannayan Aval M. Simulating climate change impacts on wheat production in Gorgan, Iran. Bull Environ Pharmacol Life Sci. 2015;4:58-67.
- Moradi R, Koocheki A, Nassiri Mahallati M. Adaptation of maize to climate change impacts in Iran. Mitig Adapt Strateg Glob Chang. 2014;19(8):1223-1238. doi: 10.1007/s11027-013-9470-2
- Nassiri M, Koocheki A, Kamali GA, Shahandeh H. Potential impact of climate change on rainfed wheat production in Iran. Arch Agron Soil Sci. 2006;52(1):113-124. doi: 10.1080/03650340600560053
- Valizadeh J, Ziaei SM, Mazloumzadeh SM. Assessing climate change impacts on wheat production (a case study). J Saudi Soc Agric Sci. 2014;13(2):107-115. doi: 10.1016/j.jssas.2013.02.002
- Moriondo M, Bindi M, Zbigniew W, et al. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Chang. 2010;15(7):657-679. doi: 10.1007/s11027-010-9219-0
- Ventrella D, Charfeddine M, Moriondo M, Rinaldi M, Bindi M. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Reg Environ Chang. 2012;12(3):407-419. doi: 10.1007/s10113-011-0256-3
- Joyce BA, Mehta VK, Purkey DR, Dale LL, Hanemann M. Modifying agricultural water management to adapt to climate change in California’s central valley. Clim Chang. 2011;109:299-316. doi: 10.1007/s10584-011-0335-y
- Rochdane S, Reichert B, Messouli M, Babqiqi A, Khebiza MY. Climate change impacts on water supply and demand in Rheraya Watershed (Morocco), with potential adaptation strategies. Water. 2012;4:28-44. doi: 10.3390/w4010028
- Blanco-Gutierrez I, Varela-Ortega C, Purkey DR. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: A hydro-economic modeling approach. J Environ Manag. 2013;128:144-160. doi: 10.1016/j.jenvman.2013.04.037
- Esteve P, Varela-Ortega C, Gutierrez I, Downing TE. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol Econ. 2015;120:49-58. doi: 10.1016/j.ecolecon.2015.09.017
- Forni LG, Medellin-Azuara J, Tansey M, et al. Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis. Water Resour Econ. 2016;16:15-27. doi: 10.1016/j.wre.2016.10.002
- Kavand H, Ziaee S, Mardani Najafabadi M. Assessing the consequences of internalization of the side effects of water pollution on the quantitative and qualitative management of Zayandehroud basin. J Agric Econ Dev. 2020;34(3):341-356. (In Persian)
- Savari M, Moradi M. Explaining cognitive factors influencing farmers’ intention towards livability in drought conditions in Hendijan County. Geogr Environ Plan. 2020;30(4):139-160.
- Khanal U, Wilson C, Hoang VN, Lee B. Farmers’ adaptation to climate change, its determinants and impacts on rice yield in Nepal. Ecol Econ. 2018;144:139-147. doi: 10.1016/j.ecolecon.2017.08.006
- Chathuranika I, Khaniya B, Neupane K, et al. Implementation of water-saving agro-technologies and irrigation methods in agriculture of Uzbekistan on a large scale as an urgent issue. Sustain Water Resour Manag. 2022;8:155. doi: 10.1007/s40899-022-00746-6
- Asif Khan M, Khalid Anser M, Usman B, et al. Decoding carbon sequestration: the impact of agriculture, conservation policies, climate, and land use. Asian J Water Environ Pollut. 2025;2025;025050027. doi: 10.36922/AJWEP025050027
- Barua P, Rahman SH, Eslamian S. Adaptation practices by the farmers for reduction of salinisation problem in the paddy fields of South-Eastern coast of Bangladesh. Asian J Water Environ Pollut. 2022;19(6):37-44. doi: 10.3233/AJW220086
- Quandt A, Neufeldt H, McCabe JT. The role of agroforestry in building livelihood resilience to floods and drought in semiarid Kenya. Ecol Soc. 2017;22(3):10. doi: 10.5751/ES-09461-220310
- Pakmehr S, Yazdanpanah M, Baradaran M. Explaining farmers’ response to climate change-induced water stress through cognitive theory of stress: An Iranian perspective. Environ Dev Sustain. 2021;23(4):5776-5793. doi: 10.1007/s10668-020-00846-3
- Zobeidi T, Yazdanpanah M, Komendantova N, Sieber S, Loehr K. Factors affecting smallholder farmers’ technical and non-technical adaptation responses to drought in Iran. J Environ Manag. 2021;298:113552. doi: 10.1016/j.jenvman.2021.113552
- Zarafshani K, Maleki T, Keshavarz M. Assessing the vulnerability of farm families towards drought in Kermanshah province, Iran. GeoJournal. 2020;85:823-836. doi: 10.1007/s10708-019-09994-0
- Zobeidi T, Yaghoubi J, Yazdanpanah M. Exploring the motivational roots of farmers’ adaptation to climate change induced water stress through incentives or norms. Sci Rep. 2022;12(1):15208. doi: 10.1038/s41598-022-19384-1
- Callejas Moncaleano DC, Pande S, Rietveld L. Water use efficiency: A review of contextual and behavioral factors. Front Water. 2021;3:685650. doi: 10.3389/frwa.2021.685650
- Khoshnodifar Z, Karimi H, Ataei P. Mechanisms to change farmers’ drought adaptation behaviors in Sistan and Baluchistan Province, Iran. Front Sustain Food Syst. 2023;7:1121254. doi: 10.3389/fsufs.2023.1121254
- Layani G, Bakhshoodeh M. Water security in Kowsar Dam basin under climate variability: Application of system dynamics approach. Agric Econ (Karaj). 2019;13(1):47-72. doi: 10.22034/IAES.2019.98544.1649
- Regional Water Company of Kohgiluyeh and Boyer- Ahmad. Comprehensive Reports of Water Resources of Kowsar Basin; 2019. (In Persian)
- Luís S, Lima ML, Roseta-Palma C, et al. Psychosocial drivers for change: Understanding and promoting stakeholder engagement in local adaptation to climate change in three European Mediterranean case studies. J Environ Manag. 2018;223:165-174. doi: 10.1016/j.jenvman.2018.06.020
- Yates D, Sieber J, Purkey D, Huber-Lee A. WEAP21 - a demand-, priority-, and preference-driven water planning model. Part 1: Model characteristics. Water Int. 2005;30(4):487-500. doi: 10.1080/02508060508691893
- Sieber J, Purkey D. WEAP, Water Evaluation and Planning System. User Guide. Sweden: Stockholm Environment Institute, U.S. Center; 2011.
- Howitt R. Positive mathematical programming. Am J Agric Econ. 1995;77:329-342.
- Heckelei T. Calibration and Estimation of Programming Models for Agricultural Supply Analysis. PhD thesis. Germany: University of Bonn; 2002.
- Heckelei T, Britz W. Positive mathematical programming with multiple data points: A cross-sectional estimation procedure. Cahiers Econ Sociol Rural. 2000;57:27-50. doi: 10.3406/reae.2000.1649
- Greaves M, Zibarras LD, Stride C. Using the theory of planned behavior to explore environmental behavioral intentions in the workplace. J Environ Psychol. 2013;34:109-120. doi: 10.1016/j.jenvp.2013.02.003
- Azarm H, Bakhshoodeh M, Zibaei M, Nasrnia F. Incorporating land use changes and pastoralists’ behavior in sustainable rangeland management: Evidence from Iran. Rangeland Ecol Manag. 2022;80:48-60. doi: 10.1016/j.rama.2021.09.009
- Savari M, Khaleghi B. Application of the extended theory of planned behavior in predicting the behavioral intentions of Iranian local communities toward forest conservation. Front Psychol. 2023;14:1121396. doi: 10.3389/fpsyg.2023.1121396
- De Leeuw A, Valois P, Ajzen I, Schmidt P. Using the theory of planned behavior to identify key beliefs underlying pro-environmental behavior in high-school students: Implications for educational interventions. J Environ Psychol. 2015;42:128-138. doi: 10.1016/j.jenvp.2015.03.005
- Han H. The norm activation model and theory-broadening: Individuals’ decision-making on environmentally-responsible convention attendance. J Environ Psychol. 2014;40:462-471. doi: 10.1016/j.jenvp.2014.10.006
- Zhang L, Ruiz-Menjivar J, Luo B, Liang Z, Swisher ME. Predicting climate change mitigation and adaptation behaviors in agricultural production: A comparison of the theory of planned behavior and the Value-Belief- Norm Theory. J Environ Psychol. 2020;68:101408. doi: 10.1016/j.jenvp.2020.101408
- Yazdanpanah M, Forouzani M. Application of the theory of planned behaviour to predict Iranian students’ intention to purchase organic food. J Clean Prod. 2015;107:342-352. doi: 10.1016/j.jclepro.2015.02.071
- Hair JF, Hult GTM, Ringle CM, Sarstedt M, Thiele KO. Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. J Acad Mark Sci. 2017;45:616-632. doi: 10.1007/s11747-017-0517-x
- Khoshmaram M, Shiri N, Shinnar RS, Savari M. Environmental support and entrepreneurial behavior among Iranian farmers: The mediating roles of social and human capital. J Small Bus Manag. 2020;58(5):1064-1088. doi: 10.1111/jsbm.12501
- Reidsma P, Ewert F, Lansink AO, Leemans R. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. Eur J Agron. 2010;32:91-102. doi: 10.1016/j.eja.2009.06.003
- Westerhoff L, Smit B. The rains are disappointing us: Dynamic vulnerability and adaptation to multiple stressors in the Afram Plains, Ghana. Mitig Adapt Strateg Glob Chang. 2008;14:317-337. doi: 10.1007/s11027-008-9166-1
- Yaghoubi J, Yazdanpanah M, Komendantova N. Iranian agriculture advisors’ perception and intention toward biofuel: Green way toward energy security, rural development and climate change mitigation. Renew Energy. 2019;130:452-459. doi: 10.1016/j.renene.2018.06.081