AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025040020
ORIGINAL RESEARCH ARTICLE

Groundwater contamination with heavy metals: A case study in Hebron, Palestine

Waseem Al-Tamimi1* Fadoua Hamzaoui-Azaza2 Marwan Ghanem3 Rachida Bouhalila1
Show Less
1 Modeling Hydraulic and Environmental Laboratory, National Engineering School of Tunis (ENIT), University of Tunis El Manar, Campus Farhat Hached El Manar, Tunis, Tunisia
2 Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), Geology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
3 Department of Geography, GeoInformatics Programme, Birzeit University, Ramallah, West Bank, Palestine
Submitted: 22 January 2025 | Revised: 3 March 2025 | Accepted: 6 March 2025 | Published: 3 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The study aims to identify seasonal fluctuations in groundwater quality concerning heavy metal contamination. Specifically, it assesses heavy metal concentrations in groundwater in Wadi Al-Samen, evaluates its suitability for drinking purposes, and compares these levels with the World Health Organization standards. Groundwater samples were collected from 20 wells over two seasons and analyzed for 16 trace elements using atomic absorption spectrometry. The metals analyzed include barium, molybdenum, iron, cobalt, cadmium, chromium, boron, lithium, aluminum, arsenic, manganese, nickel, copper, zinc, lead, and selenium. Results showed that four samples exceeded the permissible limits for barium and lithium in both seasons, three samples exceeded the recommended zinc limits in both seasons, 17 samples exceeded the permissible selenium limit in the dry season, and 145 in the wet season, while one sample exceeded the recommended copper limit in both seasons. The heavy metal pollution index (HPI) and metal index (MI) were used to assess contamination levels. HPI values exhibited significant spatial variations, with recorded values of 17.2 in the dry season and 11.99 in the wet season, both below the critical threshold of 100. Groundwater quality was classified as poor in the Al-Hejreh well and very poor in the Al-Fawwar1 well, rendering it unsuitable for drinking. MI results indicated moderate heavy metal contamination, with mean MI values of 2.3 in the dry season and 2.2 in the wet season. The heavy metals detected in the study area were categorized into toxic elements, alkaline earth metals, alkali metals, transition metals, other metallic elements, and non-metallic elements. This research highlights groundwater contamination in Wadi Al-Samen and underscores the need for mitigation measures to reduce health risks for local residents.

Keywords
Heavy metals
Heavy metal pollution index
Metal index
Wadi Al-Samen
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Al-Khuzaie MM, Abdul Maulud KN, Wan Mohtar WH, Yaseen MZ. Assessment of untreated wastewater pollution and heavy metal contamination in the Euphrates river. Environ Pollut Bioavail. 2023;36(1):2292110. doi: 10.1080/26395940.2023.2292110

 

  1. Kana AA. Heavy metal assessment of groundwater quality in part of Karu, Central Nigeria. Water Pract Technol. 2022;17(9):1802-1817. doi: 10.2166/wpt.2022.102

 

  1. Brindha K, Paul R, Walter J, Tan ML, Singh, MK. Trace metals contamination in groundwater and implications on human health: Comprehensive assessment using hydrogeochemical and geostatistical methods. Environ Geochem Health. 2020;42:3819-3839. doi: 10.1007/s10653-020-00637-9

 

  1. Khalid S, Shahid M, Natasha SAH, et al, Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan. Environ Sci Pollut Res. 2020;27:39852-39864. doi: 10.1007/s11356-020-10106-6

 

  1. Verma R, Dwivedi P. Heavy metal water pollution-A case study. Recent Res Sci Technol. 2013;5(5):98-99.

 

  1. Witkowska D, Słowik J, Chilicka K. Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules. 2021;26(19):6060. doi: 10.3390/molecules26196060

 

  1. Ali Khan MM, Umar R, Lateh H. Study of trace elements in groundwater of Western Uttar Pradesh, India. Sci. Res. Essays. 2010;5(20):3175-3182.

 

  1. Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:6730305. doi: 10.1155/2019/6730305

 

  1. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:643972. doi: 10.3389/fphar.2021.643972

 

  1. Jaishankar M, Tseten T, Anbalagan N, Mathew, BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60-72. doi: 10.2478/intox-2014-0009

 

  1. Collin MS, Venkatraman SK, Vijayakumar N, et al., Bioaccumulation of lead (Pb) and its effects on human: A review. J Hazard Mater Adv. 2022;7:100094. doi: 10.1016/j.hazadv.2022.100094

 

  1. Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: Toxicity and human health effects. Arch Toxicol. 2025;99(1):153-209. doi: 10.1007/s00204-024-03903-2

 

  1. Mitra S, Chakraborty AJ, Tareq AM, et al., Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ Sci. 2022;34(3):101865. doi: 10.1016/j.jksus.2022.101865

 

  1. Hou S, Yuan L, Jin P, et al, A clinical study of the effects of lead poisoning on the intelligence and neurobehavioral abilities of children. Theor Biol Med Model. 2013;10:13. doi: 10.1186/1742-4682-10-13

 

  1. Loh N, Loh HP, Wang LK, Wang MHS. Health effects and control of toxic lead in the environment. In: Wang L, Wang MH, Hung YT, Shammas N, editors. Handbook of Environmental Engineering. Volume: Natural resources and control processes. 2016. p. 17. doi: 10.1007/978-3-319-26800-2_5

 

  1. Mahurpawar M. Effect of heavy metals on human health. Int J Res Granthaalayah. 2015;530(516):1-7. doi: 10.29121/granthaalayah.v3.i9SE.2015.3282.

 

  1. Toxicological Profile for Arsenic. Atlanta, GA: Agency for Toxic Substances and Disease Registry (ATSDR); 2007. Available from: https://www.atsdr.cdc.gov/ toxprofiles/tp2.pdf [Last accessed on 2025 Feb 24.

 

  1. Uede K, Furukawa F. Skin manifestations in acute arsenic poisoning from the Wakayama curry‐poisoning incident. Br J Dermatol. 2003;149(4):757-762. doi: 10.1046/j.1365-2133.2003.05511.x

 

  1. Di Duca F, Montuori P, De Rosa E, et al. Assessing heavy metals in the Sele river estuary: An overview of pollution indices in Southern Italy. Toxics. 2024;12(1):38. doi: 10.3390/toxics12010038

 

  1. Troudi N, Tzoraki O, Hamzaoui-Azaza F, Melki F, Zammouri M. Estimating adults and children’s potential health risks to heavy metals in water through ingestion and dermal contact in a rural area, Northern Tunisia. Environ Sci Pollut Res Int. 2022;29(37):56792-56813. doi: 10.1007/s11356-022-19667-0

 

  1. Sadeghi H, Fazlzadeh M, Zarei A, Mahvi AH, Nazmara S. Spatial distribution and contamination of heavy metals in surface water, groundwater and topsoil surrounding Moghan’s tannery site in Ardabil, Iran. Int J Environ Anal Chem. 2020;102(5):1049-1059. doi: 10.1080/03067319.2020.1730342

 

  1. Shaibur MR. Heavy metals in chrome-tanned shaving of the tannery industry are a potential hazard to the environment of Bangladesh. Case Stud Chem Environ Eng. 2023;7:100281. doi: 10.1016/J.CSCEE.2022.100281.

 

  1. Angon PB, Islam MS, Shreejana KC, et al. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon. 2024;10(7):e28357. doi: 10.1016/j.heliyon.2024.e28357

 

  1. Abdullah JE. Quality assessment for Shatt Al-Arab river using heavy metal pollution index and metal index. J Environ Earth Sci. 2013;3(5):114-120.

 

  1. Abadi HT, Alemayehu T, Berhe BA. Heavy metal’s pollution health risk assessment and source appraisal of groundwater and surface water in Irob catchment, Tigray, Northern Ethiopia. Appl Water Sci. 2024;14:201. doi: 10.1007/s13201-024-02237-9

 

  1. PWA [Palestinian Water Authority. Annual Status Report on Water Resources, Water Supply, and Wastewater in the Occupied State of Palestine. Palestinian Water Authority; 2012.

 

  1. Abu Dayyeh Q. Introduction to Water Poverty and Social Crisis in Hebron District Palestine. France: OpenEdition Books; 2009. p. 111-119. doi: 10.4000/books.irdeditions.4815

 

  1. Kar D, Sur P, Mandal SK, Saha T, Kole RK. Assessment of heavy metal pollution in surface water. International Int J Environ Sci Technol. 2008;5:119-124. doi: 10.1007/BF03326004

 

  1. Nair IV, Singh K, Arumugam M, Gangadhar K, Clarson D. Trace metal quality of Meenachil River at Kottayam, Kerala (India) by principal component analysis. World Appl Sci J. 2010;9(10):1100-1107.

 

  1. Nalawade PM, Bholay AD, Mule MB. Assessment of groundwater and surface water quality indices for heavy metals nearby area of Parli thermal power plant. Univ J Environm Res Technol. 2012;2(1):47-51.

 

  1. Mohan SV, Nithila P, Reddy SJ. Estimation of heavy metals in drinking water and development of heavy metal pollution index. J Environ Sci Health Part A. 1996;A-31:283-289. doi: 10.1080/10934529609376357

 

  1. Prasad B, Kumari P, Bano S, Kumari S. Ground water quality evaluation near mining area and development of heavy metal pollution index. Appl Water Sci. 2014;4:11-17. doi: 10.1007/s13201-013-0126-x

 

  1. Sarhat AR, Al-Obaidi BS. Assessment of heavy metal pollution in Sirwan River by heavy metal pollution index (HPI) and metal index (MI). Water Conserv Sci Eng. 2023;8:12. doi: 10.1007/s41101-023-00187-y

 

  1. Lemessa F, Simane B, Seyoum A, Gebresenbet G. Assessment of the impact of industrial wastewater on the water quality of rivers around the Bole Lemi industrial park (BLIP), Ethiopia. Sustainability. 2023;15(5):4290. doi: 10.3390/su15054290

 

  1. Daghara A, Al-Khatib IA, Al-Jabari M. Quality of drinking water from springs in Palestine: West bank as a case study. J Environ Public Health. 2019;2019:8631732. doi: 10.1155/2019/8631732

 

  1. Zaarir M. Pollution Effects of the Wastewater Flow on the Groundwater Quality in Wadi-Samen Catchment / Hebron/Palestine. Master Thesis. Palestine: Institute of Environmental and Water Studies at Birzeit University; 2017. Available from: http://hdl.handle. net/20.500.11889/5774 [Last accessed on 2025 Mar 07.

 

  1. Al-Tamimi W, Hamzaoui-Azaza F, Ghanem, M, Bouhalila, R. Hydro-geochemistry and application of water quality index (WQI) for ground water quality assessment, Wadi Al-Samen-Hebron-West Bank. J Water Resour Protect. 2023;15:481-508. doi: 10.4236/jwarp.2023.1510027

 

  1. Dey M, Akter A, Islam S, et al. Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon. 2021;7(12):e08625. doi: 10.1016/j.heliyon.2021.e08625

 

  1. Reza R, Singh G, Jain Manish K. Application of heavy metal pollution index for ground water quality assessment in Angul district of Orissa, India. Int J Res Chem Environ. 2011;1(2):118-122.

 

  1. Prasad B, Mondal KK. The impact of filling an abandoned open cast mine with fly ash on ground water quality: A case study. Mine Water Environ. 2008;27:40-45. doi: 10.1007/s10230-007-0021-5

 

  1. Prasad B, Kumari S. Heavy metal pollution index of ground water of an abandoned open cast mine filled with fly ash: A case study. Mine Water Environ. 2008;27(4):265-267.

 

  1. Rao Q, Sun Z, Tian L, Li J, Sun W, Sun W. Assessment of arsenic and heavy metal pollution and ecological risk in inshore sediments of the Yellow River estuary, China. Stoch Environ Res Risk Assess. 2018;32:2889-2902. doi: 10.1007/s00477-018-1588-z

 

  1. Lyulko I, Ambalova T, Vasiljeva T. To Integrated Water Quality Assessment in Latvia, Paper presented at the International Workshop on Information for Sustainable Water Management. MTM (Monitoring Tailor-Made) III, Nunspeet, Netherlands; 2001. p. 449-452.

 

  1. Caerio S, Costa MH, Ramos TB, et al. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol Indic. 2005;5:155-169. doi: 10.1016/j.ecolind.2005.02.001

 

  1. El-Degwy AA, Negm NA, El-Tabl AS, Goher ME. Assessment of heavy metal pollution in water and its effect on Nile tilapia (Oreochromis niloticus) in Mediterranean Lakes: A case study at Mariout Lake. Appl Water Sci. 2023;13:50. doi: 10.1007/s13201-022-01858-2

 

  1. Tamasi G, Cini R. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Sci Total Environ. 2004;327(1-3):41-51. doi: 10.1016/j.scitotenv.2003.10.011

 

  1. Sanders T, Liu Y, Buchner V, Tchounwou PB. Neurotoxic effects and biomarkers of lead exposure: A review. Rev Environ Health. 2009;24(1):15-45. doi: 10.1515/reveh.2009.24.1.15

 

  1. Goel PK. Water Pollution Causes Effect and Control. Karnataka: New Age International Publishers; 1997. p. 269.

 

  1. Ren YS, Ilyas M, Xu RZ, Ahmad W, Wang R, Hamad H. Concentrations of lead in groundwater and human blood in the population of Palosai, a Rural Area in Pakistan: Human exposure and risk assessment. Adsorp Sci Technol. 2022;2022:8341279. doi: 10.1155/2022/8341279

 

  1. WHO [World Health Organization. Guidelines for Drinking Water Quality. 4th ed. Geneva, Switzerland: World Health Organization; 2011. p. 564. Available from: http://apps. who.int/iris/bitstream/10665/44584/1/9789241548151_ eng.pdf [Last accessed on 2025 Mar 07.

 

  1. Katiyar P, Yadu B, Korram J, Satnami ML, Kumar M, Keshavkant S. Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. J Environ Sci (China). 2020;92:18-27. doi: 10.1016/j.jes.2020.02.013

 

  1. Sarkar S, Blaney LM, Gupta A, Ghosh D, Sengupta AK. Arsenic removal from groundwater and its safe containment in a rural environment: Validation of a sustainable approach. Environ Sci Technol. 2008;42(12):4268-4273. doi: 10.1021/es702556t

 

  1. Kanel SR, Das TK, Varma RS, et al. Arsenic contamination in groundwater: Geochemical basis of treatment technologies. ACS Environ Au. 2023;3(3):135-152. doi: 10.1021/acsenvironau.2c00053

 

  1. Lindsey BD, Belitz K, Cravotta CA 3rd, Toccalino PL, Dubrovsky NM. Lithium in groundwater used for drinking-water supply in the United States. Sci Total Environ. 2021;767:144691. doi: 10.1016/j.scitotenv.2020.144691

 

  1. Dugamin EJM, Richard A, Cathelineau M, Boiron MC, Despinois F, Brisset A. Groundwater in sedimentary basins as potential lithium resource: A global prospective study. Sci Rep. 2021;11(1):21091. doi: 10.1038/s41598-021-99912-7

 

  1. Schrauzer GN, Shrestha KP. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res. 1990;25(2):105-113. doi: 10.1007/BF02990271

 

  1. Aral H, Vecchio-Sadus A. Toxicity of lithium to humans and the environment--a literature review. Ecotoxicol Environ Saf. 2008;70(3):349-356. doi: 10.1016/j.ecoenv.2008.02.026

 

  1. Hamstra SI, Roy BD, Tiidus P, et al. Beyond its psychiatric use: The benefits of low-dose Lithium appenementation. Curr Neuropharmacol. 2023;21(4):891-910. doi: 10.2174/1570159X20666220302151224

 

  1. Oruch R, Elderbi MA, Khattab HA, Pryme IF, Lund A. Lithium: A review of pharmacology, clinical uses, and toxicity. Eur J Pharmacol. 2014;740:464-473. doi: 10.1016/j.ejphar.2014.06.042

 

  1. Quiroz JA, Gould TD, Manji HK. Molecular effects of lithium. Mol Interv. 2004;4(5):259-272. doi: 10.1124/mi.4.5.6

 

  1. Lombard MA, Brown EE, Saftner DM, et al. Estimating lithium concentrations in groundwater used as drinking water for the conterminous United States. Environ Sci Technol. 2024;58(2):1255-1264. doi: 10.1021/acs.est.3c03315

 

  1. Harkness JS, Darrah TH, Moore MT, et al. Naturally occurring versus anthropogenic sources of elevated molybdenum in groundwater: Evidence for geogenic contamination from Southeast Wisconsin, United States. Environ Sci Technol. 2017;51(21):12190-12199. doi: 10.1021/acs.est.7b03716

 

  1. Singh KP, Bhayana N. Geochemistry of groundwater of Ludhiana area, Punjab with special reference to its use for India. Geol Cong. 1986:579-594.

 

  1. Wilbur S, Abadin H, Fay M, et al. Toxicological profile for chromium. Atlanta, GA: Agency for Toxic Substances and Disease Registry (US); 2012. Available from: https:// www.atsdr.cdc.gov/toxprofiles/tp7.pdf [Last accessed on 2025 Feb 24.

 

  1. Sonon L, Kissel D, Vendrell P, Hitchcock R. Copper Levels in Drinking Water from Private Household Wells in Major Provinces. Georgia Water Resources Conference, University of Georgia. Athens, Georgia: Institute of Ecology, the University of Georgia; 2006.

 

  1. Manne R, Kumaradoss MM, Iska RSR, Devarajan A, Mekala N. Water quality and risk assessment of copper content in drinking water stored in copper container. Appl Water Sci. 2022;12(3):27. doi: 10.1007/s13201-021-01542-x

 

  1. Asokan K, Vivekanand PA, Muniraj S. An eco-friendly method to remove copper ion from drinking water by using homemade bio-adsorbent in tip-tea-bag. Mater Today Proc. 2021;36:883-885. doi: 10.1016/j.matpr.2020.07.023

 

  1. Buchanan SD, Diseker RA 3rd, Sinks T, Olson DR, Daniel J, Flodman T. Copper in drinking water, Nebraska, 1994. Int J Occup Environ Health. 1999;5(4):256-261. doi: 10.1179/oeh.1999.5.4.256

 

  1. Fewtrell L, Kay D, Jones F, Baker A, Mowat A. Copper in drinking water--an investigation into possible health effects. Public Health. 1996;110(3):175-177. doi: 10.1016/s0033-3506(96)80072-2

 

  1. WHO [World Health Organization. Guidelines for Drinking Water Quality. 2nd ed., Vol. 1. Geneva, Switzerland: World Health Organization; 1993.

 

  1. Larous S, Meniai AH, Lehocine MB. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination. 2005;185:483-490. doi: 10.1016/j.desal.2005.03.090

 

  1. Sankhla SM, Rajeev K, Prasad L. Zinc impurity in drinking water and its toxic effect on human health. Indian Internet J Forensic Med Toxicol. 2019;17(4):84. doi: 10.5958/0974-4487.2019.00015.4

 

  1. WHO [World Health Organization. Zinc in Drinking- Water. Background Document For Development of WHO Guidelines for Drinking-water Quality. 2nd ed. Vol. 2. [Health Criteria and Other Supporting Information Geneva: World Health Organization; 2003.

 

  1. Dhillon KS, Dhillon SK. Selenium in groundwater and its contribution towards daily dietary Se intake under different hydrogeological zones of Punjab, India. J Hydrol. 2016;553:615-626. doi: 10.1016/j.jhydrol.2015.12.016

 

  1. Kuisi MA, Abdel-Fattah A. Groundwater vulnerability to selenium in semi-arid environments: Amman Zarqa Basin, Jordan. Environ Geochem Health. 2010;32(2):107-128. doi: 10.1007/s10653-009-9269-y
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing