AccScience Publishing / AJWEP / Online First / DOI: 10.36922/ajwep.8282
ORIGINAL RESEARCH ARTICLE

SpillNet: A modified convolutional neural network model for oil spill detection

Tokula I. Umaha1,2 Felix Ale1,2 Ikpaya D. Ikpaya1,2 John A. Momoh1,2 Steve A. Adeshina3 Ilesanmi A. Daniyan4* Adeyinka P. Adedigba5
Show Less
1 Department of Systems Engineering, School of Engineering, African University of Science and Technology, Garki, Abuja, Nigeria
2 National Space Research and Development Agency, Institute of Space Science and Engineering, Abuja Obasanjo Space Centre, Abuja, Nigeria
3 Department of Electrical and Electronics Engineering, Faculty of Engineering, Nile University of Nigeria, Abuja, Nigeria
4 Department of Mechatronics Engineering, College of Engineering, Bells University of Technology, Ota, Ogun, Nigeria
5 Department of Mechatronics Engineering, Faculty of Engineering and Technology, Federal University of Technology, Minna, Niger, Nigeria
Submitted: 29 December 2024 | Revised: 10 February 2025 | Accepted: 21 February 2025 | Published: 6 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Rapid and accurate detection of oil spills is crucial for initiating timely response measures to mitigate environmental impacts. This study proposes an oil spill detection method based on a modified convolutional neural network, termed “SpillNet.” The architecture integrates multiple depthwise separable convolutional layers, batch normalization, and residual connections to enhance feature extraction and learning capabilities. The dataset consists of synthetic aperture radar images obtained from Sentinel-1 satellites, part of the European Space Agency’s Copernicus program. Model training was conducted on an NVIDIA Tesla T4 GPU available on Google Colab, with up to 12GB of random access memory. Programming was carried out in the Python environment using Python 3.7, and all required libraries were installed through pip. The results indicate that the proposed model achieves an accuracy of 0.946947, a mean Intersection over Union of 0.58124, and a mean specificity of 0.944469. These results demonstrate that the proposed model outperforms existing models in the oil spill segmentation task. This study contributes to advancing automated oil spill detection by offering a reliable and efficient solution for early oil spill detection and environmental monitoring.

Keywords
Batch normalization
Convolutional neural network
Model
Oil spill
Programming
Synthetic aperture radar
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Del Frate F, Petrocchi A, Lichtenegger J, Calabresi G. Neural networks for oil spill detection using ERS-SAR data. IEEE Trans Geosci Remote Sens. 2000;38(5):2282-2287. doi: 10.1109/36.868885

 

  1. Hou L, Samaras D, Kurç T, Gao Y, Davis J, Saltz J. Patch-based Convolutional Neural Network for whole Slide Tissue Image Classification. In: 2016 IEEE Conference Computer Vision Pattern Recognition CVPR; 2016. doi: 10.1109/cvpr.2016.266

 

  1. Iqbal J, Vogt M, Bajorath J. Activity landscape image analysis using convolutional neural networks. J Cheminform. 2020;12(1):34. doi: 10.1186/s13321-020-00436-5

 

  1. Wang J, Zeng X, Shan D, Zhou Q, Peng H. Image target recognition based on improved convolutional neural network. Math Probl Eng. 2022;2022:2213295. doi: 10.1155/2022/2213295

 

  1. [Citation Report] Neuromorphic Processing at Tera- OP/s Speeds with Soliton Crystal Microcombs. Available from: https://scite.ai/reports/neuromorphic-processing-at-tera-op-s-speeds-G3mRdKWE?showReferences=true [Last accessed on 2024 Jun 13].

 

  1. Topouzelis K. Oil Spill Detection by SAR Images: Dark formation detection, feature extraction and classification algorithms. Sensors. 2008;8(10):6642-6659. doi: 10.3390/s8106642

 

  1. Schvartzman I, Havivi S, Maman S, Rotman SR, Blumberg DG. Large oil spill classification using sar images based on spatial histogram. Int Arch Photogramm Remote Sens Spatial Inform Sci. 2016;XLI-B8:1183-1186. doi: 10.5194/isprs-archives-XLI-B8-1183-2016

 

  1. Mahmoudi Ghara F, Shokouhi SB, Akbarizadeh G. A new technique for segmentation of the oil spills from synthetic-aperture radar images using convolutional neural network. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:8834-8844. doi: 10.1109/JSTARS.2022.3213768

 

  1. Chen Y, Wang Z. Marine Oil spill detection from SAR images based on attention u-net model using polarimetric and wind speed information. Int J Environ Res Public Health. 2022;19(19):19. doi: 10.3390/ijerph191912315

 

  1. Kumar A, Roy AH, Andreadis KM, He X, Butler C. A multi-sensor approach to characterize winter water-level drawdown patterns in lakes. Remote Sens. 2024;16(6):947. doi: 10.3390/rs16060947.

 

  1. Pham-Duc B, Prigent C, Aires F. Surface water monitoring within cambodia and the vietnamese mekong delta over a year, with Sentinel-1 SAR observations. Water. 2017;9(6):366. doi: 10.3390/w9060366

 

  1. Vyas G, Bhan A, Gupta D. Detection of oil Spills using Feature Extraction and Threshold Based Segmentation Techniques. In: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN); 2015. p. 579-583. doi: 10.1109/SPIN.2015.7095433

 

  1. Liu P, Li Y, Liu B, Chen P, Xu J. Semi-automatic oil spill detection on X-Band marine radar images using texture analysis, machine learning, and adaptive thresholding. Remote Sens. 2019;11(7):756. doi: 10.3390/rs11070756

 

  1. Temitope Yekeen S, Balogun AL. Advances in remote sensing technology, machine learning and deep learning for marine oil spill detection, prediction and vulnerability assessment. Remote Sens. 2020;12(20):756. doi: 10.3390/rs12203416

 

  1. Fingas MF, Brown CE. Review of oil spill remote sensing. Spill Sci Technol Bull. 1997;4(4):199-208. doi: 10.1016/S1353-2561(98)00023-1

 

  1. Zhang C, Harrison PA, Pan X, Li H, Sargent I, Atkinson PM. Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification. Remote Sens Environ.2020;237:111593. doi: 10.1016/j.rse.2019.111593

 

  1. Zhan C, Bai K, Tu B, Zhang W. Offshore Oil spill detection based on CNN, DBSCAN, and hyperspectral imaging. Sensors. 2024;24(2):411. doi: 10.3390/s24020411

 

  1. Zhang J, Ai B, Shangand H, Li B. Oil detection in SAR Images Based on Improved Mask R-CNN Model. In: Proceeding SPIE 12815. Internaational Conference on Remote Sensing, Mapping and Geograhic Systems; 2023. doi: 10.1117/12.3010303

 

  1. Ma X, Xu J, Wu P, Kong P. Oil spill detection based on deep convolutional neural networks using polarimetric scattering information from Sentinel-1 SAR images. IEEE Trans Geosci Remote Sens. 2022;60:4204713.

 

  1. Yekeen ST, Balogun AL, Wan Yusof KB. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS J Photogramm Remote Sens. 2020;167:190-200.

 

  1. Feinauer DM, Latif G, Alenazy AM, Tayem N, Alghazo J, Alzubaidi L. Oil Spill Identification Using Deep Convolutional Neural Networks. In: Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022. Institute of Electrical and Electronics Engineers; 2022. p. 240-245. doi: 10.1109/CICN56167.2022.10008373

 

  1. Mahmoud AS, Mohamed SA, El-Khoriby RA, AbdelSalam HM, El-Khodary IA. Oil spill identification based on dual attention unet model using synthetic aperture radar images. J Indian Soc Remote Sens. 2023;51:121-133. doi: 10.1007/s12524-022-01624-6

 

  1. Ahmed S, ElGharbawi T, Salah M, El-Mewafi M. Deep neural network for oil spill detection using Sentinel-1 data: Application to Egyptian coastal regions. Geomatics Nat Hazards Risk. 2022;14(1):76-94.

 

  1. Huang X, Zhang B, Perrie W, Lu Y, Wang C. A novel deep learning method for marine oil spill detection from satellite synthetic aperture radar imagery. Mar Pollut Bull. 2022;179:113666.

 

  1. Basit A, Siddique MA, Sarfraz MS. Deep Learning Based Oil Spill Classification Using UNET Convolutional Neural Network. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium; 2021. p. 3491-3494. doi: 10.1109/IGARSS47720.2021.9553646

 

  1. Abba AS, Mustaffa NH, Hashim SZM, Alwee R. Oil spill classification based on satellite image using deep learning techniques. Baghdad Sci.J. 2024;21(2(SI):0684.

 

  1. Dehghani-Dehcheshmeh S, Akhoondzadeh M, Homayouni S. Oil spills detection from SAR Earth observations based on a hybrid CNN transformer networks. Mar Pollut Bull. 2023;190:114834.

 

  1. Kalyan KS. A survey of GPT-3 family large language models including ChatGPT and GPT-4. Rochester, NY: Cornell University, New York; 2023. doi: 10.2139/ssrn.4593895

 

  1. Urolagin S, Nayak J, Acharya UR. Gabor CNN based intelligent system for visual sentiment analysis of social media data on cloud environment. IEEE Access. 2022;10:132455-132471. doi: 10.1109/ACCESS.2022.3228263

 

  1. Daniyan IA, Dahunsi OA, Oguntuase OB, Daniyan OL, Mpofu K. Development of a prototype test rig for leak detection in pipelines. Procedia CIRP. 2019;80:524-529. doi: 10.1016/j.procir.2019.01.016

 

  1. Daniyan IA, Balogun V, Ererughurie OK, Daniyan OL, Oladapo BI. Development of an inline inspection robot for the detection of pipeline defects. J Facilities Manag. 2022;20(2):193-217. doi: 10.1108/JFM-01-2021-0010

 

  1. Krestenitis M, Orfanidis G, Ioannidis K, Avgerinakis K, Vrochidis S, Kompatsiaris I. Oil spill identification from satellite images using deep neural networks. Remote Sens. 2019;11(15):1762. doi: 10.3390/rs11151762

 

  1. Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1800-1807. doi: 10.1109/CVPR.2017.195

 

  1. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778. doi: 10.1109/CVPR.2016.90

 

  1. Mustafa A, Kim H, Hilton A. MSFD: Multi-Scale segmentation-based feature detection for wide-baseline scene reconstruction. IEEE Trans Image Process. 2019;28(3):1118-1132. doi: 10.1109/TIP.2018.2872906

 

  1. Mera D, Bolon-Canedo V, Cotos JM, Alonso-Betanzos A. On the use of feature selection to improve the detection of sea oil spill in SAR images. Comput Geosci. 2017;100:166-178.

 

  1. Najouri Z, Rianzanoff S, Defontaines B, Xavier JP. A statistical approach to preprocess and enhance c-band SAR images in order to detect automatically marine oi slicks. IEEE Trans Geosci Remote Sens. 2018;56:2554-2564.

 

  1. Liu X, Zhang Y, Zhou H, et al. Multi-source knowledge graph reasoning for ocean oil spill detection from satellite SAR images. Int J Appl Earth Observ Geoinform. 2023;116:103153.

 

  1. Bui NA, Oh Y, Lee I. Oil spill detection and classification through deep learning and tailored data augmentation. Int J Appl Earth Observ Geoinform. 2024;129:103845. doi: 10.1016/j.jag.2024.103845

 

  1. Ukpaka CP, Puyate YT, Nwokide LC. Predictive model to detect insulation failure and pipe leakage in natural gas transmission pipeline using simulation software. Indian J Eng. 2019;16:135-166.

 

  1. Ukenedo OG, Ukpaka CP, Nkoi B. Effects of unsafe acts and conditions on the reliability of equipment installation in oil and gas servicing unit: A Case Study. Indian J Eng. 2022;19(51):294-309.

 

  1. Khaira A, Dwivedi RK, Srivastava S. A state of the art review of online condition monitoring tools using ndt as principal testing technique. Indian J Eng. 2016;13(33):338-346.

 

  1. Waghmare SN, Raut DN, Mahajan SK, Bhamare SS. Improving reliability for SMES in India by using faults classification. Indian J Eng. 2016;13(33):354-361.

 

  1. Promise NU, Ukpaka CP, Puyate YT. Biokinetics of crude oil remediation using Dogoyaro (Azadirachta indica) Stem. Indian J Eng. 2020;17(47):250-260.

 

  1. Das K, Janardhana P, Narayana H. Application of CNN based image classification technique for oil spill detection. Indian J Geo Mar Sci. 2023;52(1):5-14.

 

  1. Guo H, Wu D, An J. Discrimination of oil slicks and look-alikes in polarimetric SAR images using CNN. Sensors. 2017;17(8):1837. doi: 10.3390/s17081837

 

  1. Hidalgo MN, Gallego AJ, Gil P, Pertusa A. Two-stage convolutional neural network for ship and spill detection using SLAR images. IEEE Trans Geosci Remote Sens. 2018;56(9):5217-5230. doi: 10.1109/TGRS. 2018.2812619

 

  1. Cantorna D, Dafonte C, Iglesias A, Arcay B. Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms. Appl Soft Comput. 2019;84:105716. doi: 10.1016/j.asoc.2019.105716

 

  1. Zeng K, Wang Y. A deep convolutional neural network for oil spill detection from spaceborne SAR images. Remote Sens. 2020;12(6):1015. doi: 10.3390/rs12061015

 

  1. Song D, Zhen Z, Wang B, et al. A novel marine oil spillage identification scheme based on convolution neural network feature extraction from fully polarimetric SAR imagery. IEEE Access. 2020;8:59801-59820. doi: 10.1109/ACCESS.2020.2979219

 

  1. Kang J, Yang C, Yi J, Lee Y. Detection of marine oil spill from planetscope images using CNN and transformer models. J Mar Sci Eng. 2024;12:2095.

 

  1. Hamza MS, Jauro SS, Ismail M. Oil spill detection using convolutional neural network. Bima J Sci Technol. 2023;7(4):15-30.
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing