AccScience Publishing / AJWEP / Volume 21 / Issue 4 / DOI: 10.3233/AJW240050
RESEARCH ARTICLE

Examining the Effects of Magneto Priming on Rice and Determination of Crop Indices from Absorption Spectrum for Ecological Yield

Preetinder Singh* Himani Goyal Sharma1
Show Less
1 Department of Electronics and Communication Engineering/Electrical Engineering Chandigarh University, Gharuan, Mohali – 140413, Punjab, India
2 Department of Electronics and Communication Engineering Chandigarh University, Gharuan, Mohali – 140413, Punjab, India
AJWEP 2024, 21(4), 91–100; https://doi.org/10.3233/AJW240050
Submitted: 27 February 2024 | Revised: 26 June 2024 | Accepted: 26 June 2024 | Published: 25 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

A magnetic field is a kind of therapy for plants that boosts plant health and plants immunity. I have considered rice samples and prepared those for therapy with the help of different fertilisers and soil quality is of prime concern. Plant biochemistry, structure, and photosynthetic pathway all have a major impact on radiation absorption in the photo synthetically active radiation (PAR) zone. Instruments are used to measure the effects of these traits on absorbed PAR, root and shoot length for determination of various parameters including Nitrogen nutrition index.The health of the crop depends on numerous factors including primary chlorophyll enhancement and regulation on behalf of its post-sown treatment for better yield in PB-41 and PB-06. In this paper, natural crop therapy is used which reduces the use of pesticides and urea which leads to less soil pollution and less water pollution in the agriculture sector and is environment friendly. By using this technique one can improve the nutritional values of crops. Results have been validated by MATLAB. Study reveals the investigation of the magnetization on rice before and after sowing. It shows that a magnetic field with controlled intensity is helpful to grow crops with better immunity and yield which requires less number of pesticides and less amount of urea to provide better outcomes which is environment and soil-friendly and helps the microorganisms to support productivity.

Keywords
PB-06
Chl-A
Chl-B
PB-41
biomass
leaf growth
magneto priming
photosynthetic performance
YEACI
soil and water treatment
MATLAB
References

Abdollahi, F., Niknam, V., Ghanati, F., Masroor F. and  S.N. Noorbakhsh (2012). Biological effects of weak  electromagnetic field on healthy and infected lime (Citrus  aurantifolia) trees with phytoplasma. Sci World J., 2012: 1-6.

Ahmad, N. and R.G. Wyn Jones (1979). Glycine betaine,  proline and inorganic ion levels in barley seedlings  following transient stress. Plant Sci Lett., 15: 231-237.

Afzal, I., Noor M.A., Bakhtavar, M.A., Ahmad, A. and Z.  Haq (2015). Improvement of spring maize (Zea mays)  performance through physical and physiological seed  enhancements. Seed Sci Technol., 43: 1-12.

Akhter, J., Murray, R., Mahmood, K., Malik, K.A. and  S. Ahmed (2004). Improvement of degraded physical  properties of a saline-sodic soil by reclamation with kallar  grass. Plant and Soil, 258: 207-216.

Ali, L.G. and A. Haruna (2021). Influence of synergistic  priming on stimulating germination and seedling growth of  rice VAR. Journal of Research in Agriculture and Animal  Science, 8(8): 8-46.

Alexander, M.P. and S.D. Doijode (1995). Electromagnetic  field, a novel tool to increase germination and seedling  vigour of conserved onion (Allium cepa, L.) and rice  (Oryza sativa L.) seeds with low viability, Plant Genet.  Resources Newsletter 104: 1–5

Björkman, O. and B. Demmig (1987). Photon yield of  O2 evolution and chlorophyll fluorescence characteristics at  77 K among vascular plants of diverse origins. Planta, 170: 489-504.

Briantais, J.-M., Dacosta, J., Goulas, Y., Ducruet, J.-M. and  I. Moya (1996). Heat stress induces in leaves an increase  of the minimum level of chlorophyll fluorescence: A  time-resolved analysis. Photosynthesis Research, 48(1- 2): 189-196.

Cuyckens, T., Rogier, H. and D. De Zutter (2013). Numerical  assessment of the combination of subgridding and the  perfectly matched layer grid termination in the finite  difference time domain method. International Journal Of  Numerical Modelling Electronic Networks, Devices and  Fields, 27(3): 527-543.

Dey, P., Diptanu Datta, D. and R.K. Singhal (2021).  Physiological, biochemical, and molecular adaptation  mechanisms of photosynthesis and respiration under  challenging environments. In: Chapter 5, Tariq A. and A.  Roychoudhury (eds.), Plant Perspectives to Global Climate  Changes, Academic Press, pp. 79-100.

Florez, M., Alvarez, J.E. and V. Martinez (2019). Carbonell  stationary magnetic field stimulates rice roots growth.  Romanian Reports in Physics, 71: 713.

Florez, M., Carbonell, M. and E. Martinez (2007). Exposure  of maize seeds to stationary magnetic fields: Effects  on germination and early growth. Environmental and  Experimental Botany, 59(1): 68-75.

Garcia F. and L.I. Arza (2001). Influence of a stationary  magnetic field on water relations in lettuce seeds. Part  I: Theoretical considerations. Bioelectromagnetics, 22: 589-595. 

Genty, B., Harbinson, J., Briantais, J.M. and N.R. Baker  (1990). The relationship between non-photochemical  quenching of chlorophyll fluorescence and the rate of  photosystem II photochemistry in leaves. Photosynth.  Res., 25: 249-257.

Haneda, T., Fujimura, Y. and M. Iino (2006). Magnetic field  exposure stiffens regenerating plant protoplast cell walls.  Bioelectromagnetics, 27(2): 98-104.

Hasanuzzaman, M., Nahar, K., Alam, M.M., Bhowmik, P.C.,  Hossain, M.A., Rahman, M.M., Prasad, M.N.V., Ozturk,  M. and M. Fujita (2014). Potential use of halophytes to  remediate saline soils. Biomed. Res. Int., 2014: 589341

He, J., Zhang, X., Guo, W., Yuanyuan Pan, Y., Yao, X., Cheng,  T., Zhu, Y., Cao, W. and Y. Tian (2019). Estimation of  vertical leaf nitrogen distribution within a rice canopy  based on hyperspectral data. Front. Plant Sci.,10: 1802.

Imadi, S.R. et al. (2016). Phytoremediation of Saline Soils  for Sustainable Agricultural Productivity. In: Plant Metal  Interaction: Emerging Remediation Techniques, pp. 455- 468.

Islam M., Maffei M.E. and G. Vigani (2020). The geomagnetic  field is a contributing factor for an efficient iron uptake in  Arabidopsis thaliana. Front. Plant Sci., 11: 325. 

Islam M., Vigani, G. and M.E. Maffei (2020). The  geomagnetic field (GMF) modulates nutrient status and  lipid metabolism during Arabidopsis thaliana plant  development. Plants, 9: 1729.

Kolber, Z. and P.G. Falkowski (1993). Use of active  £uorescence to estimate phytoplankton photosynthesis in  situ. Limnol. Oceanogr., 38: 1646-1665.

Li, G., Wan, S., Zhou, J., Yang, Z. and P. Qin (2010). Leaf  chlorophyll fluorescence, hyperspectral reflectance,  pigments content, malondialdehyde and proline  accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and  Products, 31(1): 13-19.

Li, W., Sun, Z., Lu, S. and K. Omasa (2019). Estimation of  the leaf chlorophyll content using multi-angular spectral  reflectance factor. Plant, Cell & Environment, 42(11): 3152-3165.

Maffei M.E. (2014). Magnetic field effects on plant growth,  development, and evolution. Front. Plant Sci., 5: 445.  doi: 10.3389/fpls.2014.00445

Palov, I., Stefano, S. and K. Sirakov (2000). Possibilities  for pre-sowing electromagnetic treatment of cotton seeds,  Agricultural Engineering, 31: 3-6. 

Pietruszewski, S. (1996). Effects of magnetic biostimulation  of wheat seeds on germination, yield and proteins. Int.  Agrophysics, 10: 51-55. 

Phirke, P.S., Kubde, A.B. and S.P. Umbakar (1996). The  influence of magnetic field on plant growth, Seed Science  & Technology, 24: 375-392.

Prina-Mello, A., Farrell, E., Prendergast, P.J., Campbell, V.  and J.M.D. Coey (2005). Effects of static magnetic fields  on primary cortical neurons. Physica Scripta, T118: 205.

Qiu, Z., Ma, F., Li, Z., Xu, X., Ge, H. and C. Du  (2021). Estimation of nitrogen nutrition index in rice  from UAV RGB images coupled with machine learning  algorithms. Computers and Electronics in Agriculture,  189: 106-421.

Ritchie, R.J. (2006). Consistent sets of spectrophotometric  chlorophyll equations for acetone, methanol and ethanol  solvents. Photosynthesis Research, 89(1): 27-41.

Sarraf, M., Kataria, S., Taimourya, H., Santos, L.O.,  Menegatti, R.D., Jain, M., Ihtisham, M. and S. Liu  (2020). Magnetic field (MF) applications in plants: An  overview. Plants. 9(1): 139.

Sarraf, M., et al. (2021). Effect of Magnetopriming on  photosynthetic performance of plants. International  Journal of Molicular Science, 22(17): 9353.

Saletnik, B., Zaguła, G., Saletnik, A., Bajcar, M., Słysz, E.  and C. Puchalski (2022). Effect of magnetic and electrical  fields on yield, shelf life and quality of fruits. Appl. Sci., 12: 3183.

Schreiber, U., Hormann, H., Neubauer, C. and C. Klughammer  (1995). Assessment of photosystem-II photochemical  quantum yield by chlorophyll fuorescence quenching  analysis. Aust. J. Plant Physiol., 22: 209-220.

da Silva, J., Teixeira, A. and J. Dobránszki (2016). Magnetic  fields: How is plant growth and development impacted.  Protoplasma, 253: 231-248.

Singh, P., Garg, A., Chawla, P., Kaur, G. and . Singh (2020).  Optimize the chlorophyll level in plant/crop and plant/crop  seeds to improve the productivity by using magnetic field  developed by Electromagnetic pulse. International Journal  of Advanced Science and Technology, 29(10s): 1882-1887.

Singh, P. and H. Goyal Sharma (2023). Analysis and  investigation of magnetic field effects on development of  wheat DBW-187, PBW-725 by using MATLAB. Paper  present in: International Conference on Recent Advances  in Engineering & Technical Paper and Model Contest,  6-E:38.

Yao, Y., Li, Y., Yang, Y. and C. Li (2005). Effect of seed pretreatment by magnetic field on the sensitivity of cucumber  (Cucumis sativus) seedlings to ultraviolet-B radiation.  Environmental and Experimental Botany, 54(3): 286-294.

Yamagishi, A, Takeuchi T, Higashi T. and M. Date (1992).  Diamagnetic orientation of blood cells in high magnetic  field. Physica B, 177: 523-526.

Yano, A., Hidaka, E., Fujiwara, K. and M. Iimoto  (2001). Induction of primary root curvature in radish  seedlings in a static magnetic field. BioElectroMagnetics,  22(3): 194-199.

Zanini, J. (2021). The effects of magnetic fields on seed  germination & plant growth. Mississippi State University.  University Libraries. Institutional Repository. 

Zhang, J., Han, C. and Z. Liu (2009).Absorption spectrum  estimating rice chlorophyll concentration: Preliminary  investigations, Journal of Plant Breeding and Crop  Science, 1(5): 223-229.

Zhou, X., Carranco, R., Vitha, S. and T.C. Hall (2005). The  dark side of green fluorescent protein. New Phytologist,  168(2): 313-322.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing