AccScience Publishing / AJWEP / Volume 21 / Issue 3 / DOI: 10.3233/AJW240037
RESEARCH ARTICLE

Experimental Study on the Removal of Toluene from  Water by PTFE Hydrophobic Microporous Membrane  Using Air Gap Membrane Distillation Process

Divya Gaur1 Kailash Singh1 Sushant Upadhyaya1*
Show Less
1 Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur – 302017, India
AJWEP 2024, 21(3), 77–85; https://doi.org/10.3233/AJW240037
Submitted: 12 May 2024 | Revised: 18 May 2024 | Accepted: 18 May 2024 | Published: 4 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Toluene is used for various purposes such as a cleansing agent, paint thinner, lacquers, printing, and  leather tanning process. However, it has an adverse effect on human bodies, such as skin irritation, leukemia,  respiratory issues, mutagenicity, etc, when the chemical gets mixed in drinking and rainwater by the above routes.  Therefore, there is a threat to the environment and society because of the presence of toluene in water bodies  through industrial effluent. Henceforth, in this study, toluene is separated from water using the air gap membrane  distillation (AGMD) process. The hydrophobic microporous poly-tetra- fluoro-ethylene has been employed for this  purpose. Primarily, this work focussed on the study of operating parameters such as feed solution temperature and  coolant temperature on the AGMD performance namely permeate flux and toluene selectivity. It was observed  that the permeate flux increased exponentially from 2.07 kg/m2 h to 9.23 kg/m2 h, and 0.94 kg/m2 h to 3.53 kg/m2 h.  However, it was found that the permeate flux decreased from 9.48 kg/m2 h to 8.12 kg/m2 h, and 3.78 kg/m2 h to  2.42 kg/m2 h on increasing the coolant temperature from 5°C to 25°C at 3 mm and 11 mm air gap, respectively.  The membrane selectivity was found to be less than 1, which signifies the efficient toluene-water separation. In  order to study the membrane performance in the long run, the permeate flux was estimated continuously till 60 h  wherein the estimated flux was found to be almost constant. The membrane morphology before and after the 60  h experimental run was analysed using capture FE-SEM micrographs. The toluene concentration was estimated  using a spectrophotometer at a wavelength of 264 nm.

Keywords
toluene
hydrophobic PTFE membrane
SEM
selectivity
UV-Vis spectrophotometer
Conflict of interest
The authors declare they have no competing interests.
References

Baghel, R., Kalla, S., S.,Chaurasia, S. and K. Singh (2020).  CFD modeling of vacuum membrane distillation for  removal of naphthol blue black dye from aqueous solution  using COMSOL multiphysics. Chemical Engineering  Research and Design, 158: 77-88.

Banat, Fawzi A. and J. Simandl (1999). Membrane distillation  for dilute ethanol: separation from aqueous streams.  Journal of Membrane Science, 163(2): 333-348.

Bird, R.B., Stewart, W.E. and E.N. Lightfoot (2002).  Transport Phenomena, John Wiley & Sons, New York,  USA.

Brouwer, T., Lin, R.V., Kate, A.B., Schuur, B. and G.  Bargeman (2021). Influence of solvent and acid properties  on the relative volatility and separation selectivity for  extractive distillation of close-boiling acids. Ind. Eng.  Chem. Res., 60: 7406-7416.

Cai, J., Yin, H. and F. Guo (2020). Transport analysis of  material gap membrane distillation desalination processes.  Desalination, 481: 114361.

Elhenawy, Y., Elminshawy. A.S., Bassyouni, M., Alhathal  Alanezi, A. and E. Drioli (2020). Experimental and  theoretical investigation of a new air gap membrane  distillation module with a corrugated feed channel. Journal  of Membrane Science, 594: 117461.

Gaur, D., Singh, K., Upadhyaya, S. and S.O. Meena (2022).  Experimental study for benzene/water removal by air  gap membrane distillation. Asian Journal of Water,  Environment and Pollution, 19(5): 43-51.

Kalla, S., Upadhyaya, S. and K. Singh (2019). Principles and  advancements of air gap membrane distillation. Reviews  in Chemical Engineering, 35(7): 817-859.

Kalla, S., Upadhyaya, S., Singh, K. and R. Baghel (2019a.).  Development of heat and mass transfer correlations and  recovery calculation for HCl–water azeotropic separation  using air gap membrane distillation. Chemical Papers,  73(10): 2449-2460. 

Kalla, S., Baghel, R., Upadhyaya, S. and K. Singh (2019b).  Experimental and mathematical study of air gap membrane  distillation for aqueous HCl azeotropic separation. Journal  of Chemical Technology and Biotechnology, 94(1): 63-78.

Khan, W. (1990). An extension of Danckwerts theoretical  surface renewal model to mass transfer at contaminated  turbulent interfaces. Mathematical and Computer  Modelling, 14(C): 750-754.

Leaper, S., Abdel-Karim, A., Gad-Allah, T.A. and P.  Gorgojo (2019). Air-gap membrane distillation as a onestep process for textile wastewater treatment. Chemical  Engineering Journal, 360: 1330-1340. 

Manju, S. and S. Netramani (2017). Renewable energy  integrated desalination: A sustainable solution to overcome  future fresh-water scarcity in India. Renewable and  Sustainable Energy Reviews, 73: 594-609.

Pangarkar, B.L., Deshmukh, S.K. and P.V. Thorat (2016).  Energy efficiency analysis of multi-effect membrane  distillation (MEMD) water treatment. International  Journal of Chem Tech Research, 9(5): 279-289.

Pedram, S., Mortaheb, H.R. and F. Arefi-Khonsa (2019).  Optimization of benzene removal by air gap membrane  distillation using response surface methodology. Journal  of Water Supply: Research and Technology – AQUA,  68(4): 231-242.

Phattaranawik, J., Jiraratananon, R. and A.G. Fane (2003).  Effect of pore size distribution and air flux on mass  transport in direct contact membrane distillation. Journal  of Membrane Science, 215(1-2): 75-85.

Pui, W.K., Yusoff, R. and M.K. Aroua (2019). A review on  activated carbon adsorption for volatile organic compounds  (VOCs). Reviews in Chemical Engineering, 35(5): 649- 668.

Stähelin, P.M., Valério, A., Guelli Ulson de Souza, S., Maria  de Arruda, da Silva, A., Borges Valle, J.A., and A. Ulson  de Souza (2018). Benzene and toluene removal from  synthetic automotive gasoline by mono and bicomponent  adsorption process. Fuel, 231: 45-52. 

Upadhyaya, S., Singh. K., Chaurasia, S., Dohare, R.K. and  M. Agarwal (2016). Mathematical and CFD modeling  of vacuum membrane distillation for desalination. Desalination and Water Treatment, 57(26): 11956-11971.

van Vliet, Michelle T.H., Jones, E.R., Flörke, M., Franssen,  W.H.P., Hanasaki, N. and Y. Wada (2021). Global water  scarcity including surface water quality and expansions of  clean water technologies. Environmental Research Letters,  16(2): 024020.

Zare, S. and A. Kargari (2018). Membrane Properties in  Membrane Distillation. In: Emerging Technologies for  Sustainable Desalination Handbook. pp. 107-156.

Zhao, X., Zeng, X., Qin, Y., Li, X., Zhu, T. and X. Tang  (2018). An experimental and theoretical study of the  adsorption removal of toluene and chlorobenzene on  coconut shell derived carbon. Chemosphere, 206: 285-292.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing