AccScience Publishing / AJWEP / Volume 21 / Issue 3 / DOI: 10.3233/AJW240031
RESEARCH ARTICLE

Navigating the Nexus: Insights from the COVID-19 Pandemic for Climate Change Mitigation

Umamah M.7 Mufti A.1 Kashif Ali2 Sheeba Jilani3 Farooqi I.4 M.A. Khan5 Pervaiz R. Khan6 R. Dhupper7*
Show Less
1 Department of Physiology, All India Institute of Medical Sciences, New Delhi – 110029, India
2 Department of Physiology, Jamia Millia Islamia, New Delhi – 110025, India
3 Department of Chemical Engineering, Aligarh Muslim University, Aligarh – 202002, India
4 Department of Environmental Engineering, Aligarh Muslim University, Aligarh – 202002, India
5 Department of Statistics and O.R., Aligarh Muslim University, Aligarh – 202002, India
6 Biology Department, College of Natural & Computational Sciences, Adigrat University, Adigrat – 7040, Ethiopia
7 Amity Institute of Environmental Science, Amity University, Noida – 201313, India
AJWEP 2024, 21(3), 27–34; https://doi.org/10.3233/AJW240031
Submitted: 9 October 2023 | Revised: 19 January 2024 | Accepted: 19 January 2024 | Published: 4 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This study explores the intricate interplay between global warming, climate change, the COVID-19 pandemic, air pollution, and climate change mitigation. Drawing on lessons learned from the pandemic, we delve into the complex web of environmental challenges and policy responses. The COVID-19 crisis has highlighted the importance of early and determined action, broad public support, equitable policies, global cooperation, and transparent decision-making. While short-term emissions reductions have been observed, addressing climate change requires sustained, transformative change on a global scale. Our analysis underscores the urgency of applying the pandemic’s insights to combat climate change, recognising the interconnectedness of environmental, economic, and public health challenges.

Keywords
Climate change
COVID-19 pandemic
global warming
air pollution
climate change mitigation
References

Ali, N. and F. Islam (2020). The effects of air pollution on  COVID-19 infection and mortality-A review on recent  evidence, Front Public Health. 8: 57. doi: 10.3389/ fpubh.2020.580057

Amnuaylojaroen, T. (2021). Projection of the precipitation  extremes in Thailand under climate change scenario  RCP8.5. Front Environ Sci. 9: 657810. doi: 10.3389/ fenvs.2021.657810

Amnuaylojaroen, T. and N. Parasin (2021). The association  between COVID-19, air pollution and climate change, Front  Public Health, 9: 662499. doi: 10.3389/fpubh.2021.662499

Aref, I.M., Iqbal, M., El Atta, H. and P.R. Khan (2014).  Investigation of the decline of Juniper ecosystem in Saudi  Arabia. Final report of research project NPST, 10-AGR  1310-02.

Aref, I.M., Khan, P.R., Khan, S., El-Atta, H., Ahmed, A.I.  and M. Iqbal (2016). Modulation of antioxidant enzymes  in Juniperus procera needles in relation to habitat  environment and dieback incidence. Trees, 30: 1669-1681  doi: 10.1007/s00468-016-1399-0

Bashir, M.F., Ma, B., Bilal Komal, B., Bashir, M.A., Tan,  D. and M. Bashir (2020). Correlation between climate  indicators and COVID-19 pandemic in New York,  USA. Sci Total Environ., 728: 138835. doi: 10.1016/j. scitotenv.2020.13 8835

Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R.,  Bhatnagar, A. and A.V. Diez-Roux (2010). Particulate  matter air pollution and cardiovascular disease: An update  to the scientific statement from the American Heart  Association. Circulation, 121: 2331-2378. doi: 10.1161/ CIR.0b013e3181dbece1

Cai, Q.C., Lu, J., Xu, Q.F., Guo, Q.Z., Sun, Q.W. and  H. Yang (2007). Influence of meteorological factors and  air pollution on the outbreak of severe acute respiratory  syndrome, Public Health, 121: 258-265. doi: 10.1016/j. puhe.2006.09.023

Chan, K.H., Peiris, J.M., Lam, S.Y., Poon, L.L.M., Yuen,  K.Y. and W.H. Seto (2011). The effects of temperature and  relative humidity on the viability of the SARS coronavirus.  Adv. Virol., 2011: 734690. doi: 10.1155/2011/734690

Chen, H., Guo, J., Wang, C., Luo, F., Yu, X. and W. Zhang  (2020). Clinical characteristics and intrauterine vertical  transmission potential of COVID-19 infection in nine  pregnant women: a retrospective review of medical  records, Lancet., 395: 809-815. doi: 10.1016/S0140- 6736(20)30360-3

Cole, M.A., Ozgen, C. and E. Strobl (2020). Air pollution  exposure and Covid-19 in Dutch municipalities. Environn  Resource Econ., 76: 581-610. doi: 10.1007/s10640-020- 00491-4

Domingo, J.L., Marqu‘es, M. and J . Rovira (2020)  Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ Res., 188: 109861. doi: 10.1016/j.envres.2020.109861

Eslami, H. and M. Jalili (2020). The role of environmental  factors to transmission of SARS-CoV-2 (COVID-19).  Amb Express., 10: 92.. doi: 10.1186/s13568-020-01028-0

Flaxman, S., Mishra, S., Gandy, A., Unwin, H.J.T., Mellan,  T.A., Coupland, H., Whittaker, C., Zhu, H., Berah, T.,  Eaton, J.W. and M. Monod (2020). Estimating the effects  of non-pharmaceutical interventions on COVID-19 in  Europe. Nature, 584: 257-261. https ://doi.org/10.1038/ s4158 6-020-2405-7

Forster, P.M., Forster, H.I., Evans, M.J., Gidden, M.J., Jones,  C.D. and C.A. Keller (2020). Current and future global  climate impacts resulting from COVID-19. Nat Clim  Chan, 10: 913-919. doi: 10.1038/s41558-020-0883-0

Gale Cengage (2018). Global Warming Topic Overview.  “Global Warming and Climate Change.” Opposing  Viewpoints Online Collection, Gale, 2018 from http:// www.gale.com intl./Gale Cengage (@galecengage)/Twitter

Gardner, E.G., Kelton, D., Poljak, Z., Van Kerkhove,  M., von Dobschuetz, S. and A.L. Greer (2019). A casecrossover analysis of the impact of weather on primary  cases of Middle East respiratory syndrome, BMC Infect  Dis., 19: 113. doi: 10.1186/s12879-019-3729-5

Gilbert, M., Pullano, G., Pinotti, F., Valdano, E., Poletto,  C. and Y. Boëlle (2020). Preparedness and vulnerability  of African countries against importations of COVID-19:  A modelling study. Lancet, 395: 871-877. doi: 10.1016/ S0140-6736(20)30411-6

Global Climate Report (2020). NOAA National Centers for  Environmental Information. Published online April 2020,  retrieved on August 2, 2020 from https://www.ncdc.noaa. gov/sotc/global/202003/supplemental/page-1

Horne, B.D., Joy, E.A., Hofmann, M.G., Gesteland, P.H.,  Cannon, J.B. and J.S. Lefler (2018). Short-term elevation  of fine particulate matter air pollution and acute lower  respiratory infection. Am J Respir Crit Care Med. 198: 759-766. Doi: 10.1164/rccm.201709-1883OC

Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger,  I., Chong, T., Druckenmiller, H., Huang, L.Y., Hultgren,  A., Krasovich, E. and P. Lau (2020). The effect of largescale anti-contagion policies on the COVID-19 pandemic.  Nature, 584: 262-267. https ://doi.org/10.1038/s4158  6-020-2404-8

IPCC (2014). Climate change 2014: Impacts, adaptation,  and vulnerability. Part B: Regional aspects. Contribution  of working group II to the fifth assessment report of  the Intergovernmental 46 Panel on Climate Change.  Cambridge University Press, Cambridge, 1132. https:// doi.org/10.1017/CBO9781107415324

Islam, A.R.M.T., Hasanuzzaman, M., Azad, M.A.K., Salam,  R., Toshi, F.Z. and M.S.I. Khan (2020). Effect of  meteorological factors on COVID-19 cases in Bangladesh,  Environ Dev Sustain, 23(6): 9139-9162. doi: 10.1007/ s10668-020-01016-1

Karia, R., Gupta, I., Khandait, H., Yadav, A. and  A. Yadav (2020). COVID-19 and its modes of  transmission. SN Compr Clin Med., 2: 1-4. doi: 10.1007/ s42399-020-00498-4

Klenert, D., Funk, F., Mattauch, L. and B. O’Callaghan  (2020). Five lessons from COVID-19 for advancing  climate change mitigation. Environmental and Resource  Economics, 76: 751-778.

Kumar, G. and R.R. Kumar (2020). A correlation study  between meteorological parameters and COVID-19  pandemic in Mumbai, India, Diabetes Metab Syndr., 14: 1735-1742. doi: 10.1016/j.dsx.2020.09.002

Kumari, P. and D. Toshniwal (2020). Impact of lockdown  measures during COVID-19 on air quality–a case  study of India. Int J Environ Health Res. Doi:10.108 0/09603123.2020.1778646

Le Quéré, C., Jackson, R.B., Jones, M.W., et al. (2020).  Temporary reduction in daily global CO2 emissions during  the COVID-19 forced confinement. Nat Clim Chang.,  10: 647-653. https://doi.org/10.1038/s4155 8-020-0797-x

Lolli, S. and G . Vivone (2020). The role of tropospheric  ozone in flagging COVID-19 pandemic transmission.  Bull Atmos Sci Technol., 1: 551-555. doi: 10.21203/ rs.3.rs-89804/v1

Marazziti, D., Cianconi, P., Mucci, F., Foresi, L.,  Chiarantini, C. and A. Della Vecchia (2021). Climate  change, environment pollution, COVID-19 pandemic and  mental health. Sci. Total Environ., 773: 145182. doi:  10.1016/j.scitotenv.2021.145182

Mostafa, M.K., Gamal, G. and A . Wafiq (2021). The  impact of COVID 19 on air pollution levels and other  environmental indicators-A case study of Egypt. J Environ  Manage. 277: 111496. doi: 10.1016/j.jenvman.2020.11 1496

Mousazadeh, M., Paital, B., Naghdali, Z., Mortezania, Z.,  Hashemi, M. and E. Karamati Niaragh (2021). Positive  environmental effects of the coronavirus 2020 episode:  A review. Environ Dev Sust, 23(9): 12738-12760. doi:  10.1007/s10668-021-01240-3

National Centers for Environmental Information (2017).  Climate at a Glance, National Centers for Environmental Information (NCEI). Retrieved June 28, 2017, from https:// www.ncdc.noaa.gov/cag/

Nogues-Bravo, D., Araujo, M.B., Errea, M.P. and J.P.  Martinez-Rica (2007). Exposure of global mountain  systems to climate warming during the 21st Century.  Global Environmental Change, 17: 420-428.

Paital, B. and P.K. Agrawal (2020). Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by  overexpression of angiotensin-converting enzyme 2 in  respiratory cells: A review, Environ Chem Lett., 19: 1-18.  doi: 10.1007/s10311-020-01091-w

Pani, S.K., Lin, N.H. and S . Ravindra Babu (2020).  Association of COVID-19 pandemic with meteorological  parameters over Singapore, Sci Total Environ., 740: 140112. doi: 10.1016/j.scitotenv.2020.1401120

Paskus L (2016). http://www.nature.com/articles/ nclimate1304.epdf Pine, Juniper forests predicted to  disappear.

Pope III, C.A., Burnett, R.T., Thurston, G.D., Thun, M.J.,  Calle, E.E. and D. Krewski (2004). Cardiovascular  mortality and long-term exposure to particulate air pollution:  Epidemiological evidence of general pathophysiological  pathways of disease, Circulation, 109: 71-77. doi:  10.1161/01.CIR.0000108927.80044.7F

Pope III, C.A., Coleman, N., Pond, Z.A. and R.T. Burnett  (2020). Fine particulate air pollution and human  mortality: 25+ years of cohort studies, Environ Res.,  183: 108924. doi: 10.1016/j.envres.2019.108924

Rodó, X., San-José, A., Kirchgatter, K. and L. López (2021).  Changing climate and the COVID-19 pandemic: More than  just heads or tails. Nat Med., 27: 576-579. doi: 10.1038/ s41591-021-01303-y

Rutz, C., Loretto, M.C., Bates, A.E., Davidson, S.C., Duarte,  C.M. and W. Jetz (2020). COVID-19 lockdown allows  researchers to quantify the effects of human activity on  wildlife, Nat Ecol Evolut., 4: 1156-1159. doi: 10.1038/ s41559-020-1237-z

Sahin, M. (2020) Impact of weather on COVID-19 pandemic  in Turkey, Sci Total Environ., 728: 138810. doi: 10.1016/j. scitotenv.2020.138810

Sangkham, S., Thongtip, S. and P. Vongruang (2021).  Influence of air pollution and meteorological factors on  the spread of COVID-19 in the Bangkok metropolitan  region and air quality during the outbreak, Environ Res., 197: 111104. doi: 10.1016/j.envres.2021.111104

Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan,  A. and A. Al-Jabir (2020). World health organization  declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg., 76: 7176. doi:  10.1016/j.ijsu.2020.02.034

Tan, J., Mu, L., Huang, J., Yu, S., Chen, B. and J. Yin  (2005). An initial investigation of the association between  the SARS outbreak and weather: With the view of the  environmental temperature and its variation, J Epidemiol  Commun Health, 59: 186. doi: 10.1136/jech.2004.020180

Tirone, J. (2021). Earth’s margin for error narrows after  another year of record heat. (2020 matched 2016 as  the world’s hottest year on record). Bloomberg.com (8  January, 2021).

Wetchayont, P. (2021). Investigation on the impacts of  COVID-19 lockdown and influencing factors on air  quality in greater Bangkok, Thailand, Adv Meteorol, 2021: 6697707. doi: 10.1155/2021/6697707

Wu, X., Braun, D., Schwartz, J., Kioumourtzoglou, M.A.  and F.J.S.A. Dominici (2020). Evaluating the impact of  long-term exposure to fine particulate matter on mortality  among the elderly. Sci Adv, 6: eaba5692. doi: 10.1126/ sciadv.aba5692

Xie, J. and Y. Zhu (2020). Association between ambient  temperature and COVID-19 infection in 122 cities from  China. Sci Total Environ., 754: 138201. doi: 10.1016  j.scitotenv.2020.138

Zhu, Y., Xie, J., Huang, F. and L. Cao (2020). Association  between short-term exposure to air pollution and COVID-19  infection: Evidence from China. Sci Total Environ., 727:  138704. doi: 10.1016/j.scitotenv.2020.138704

Zoran, M.A., Savastru, R.S., Savastru, D.M. and M.N.  Tautan (2020). Assessing the relationship between surface  levels of PM2.5 and PM10 particulate matter impact  on COVID-19 in Milan, Italy. Sci Total Environ., 738: 139825. doi: 10.1016/j.scitotenv.2020.139825

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing