Navigating the Nexus: Insights from the COVID-19 Pandemic for Climate Change Mitigation
This study explores the intricate interplay between global warming, climate change, the COVID-19 pandemic, air pollution, and climate change mitigation. Drawing on lessons learned from the pandemic, we delve into the complex web of environmental challenges and policy responses. The COVID-19 crisis has highlighted the importance of early and determined action, broad public support, equitable policies, global cooperation, and transparent decision-making. While short-term emissions reductions have been observed, addressing climate change requires sustained, transformative change on a global scale. Our analysis underscores the urgency of applying the pandemic’s insights to combat climate change, recognising the interconnectedness of environmental, economic, and public health challenges.
Ali, N. and F. Islam (2020). The effects of air pollution on COVID-19 infection and mortality-A review on recent evidence, Front Public Health. 8: 57. doi: 10.3389/ fpubh.2020.580057
Amnuaylojaroen, T. (2021). Projection of the precipitation extremes in Thailand under climate change scenario RCP8.5. Front Environ Sci. 9: 657810. doi: 10.3389/ fenvs.2021.657810
Amnuaylojaroen, T. and N. Parasin (2021). The association between COVID-19, air pollution and climate change, Front Public Health, 9: 662499. doi: 10.3389/fpubh.2021.662499
Aref, I.M., Iqbal, M., El Atta, H. and P.R. Khan (2014). Investigation of the decline of Juniper ecosystem in Saudi Arabia. Final report of research project NPST, 10-AGR 1310-02.
Aref, I.M., Khan, P.R., Khan, S., El-Atta, H., Ahmed, A.I. and M. Iqbal (2016). Modulation of antioxidant enzymes in Juniperus procera needles in relation to habitat environment and dieback incidence. Trees, 30: 1669-1681 doi: 10.1007/s00468-016-1399-0
Bashir, M.F., Ma, B., Bilal Komal, B., Bashir, M.A., Tan, D. and M. Bashir (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci Total Environ., 728: 138835. doi: 10.1016/j. scitotenv.2020.13 8835
Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R., Bhatnagar, A. and A.V. Diez-Roux (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121: 2331-2378. doi: 10.1161/ CIR.0b013e3181dbece1
Cai, Q.C., Lu, J., Xu, Q.F., Guo, Q.Z., Sun, Q.W. and H. Yang (2007). Influence of meteorological factors and air pollution on the outbreak of severe acute respiratory syndrome, Public Health, 121: 258-265. doi: 10.1016/j. puhe.2006.09.023
Chan, K.H., Peiris, J.M., Lam, S.Y., Poon, L.L.M., Yuen, K.Y. and W.H. Seto (2011). The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv. Virol., 2011: 734690. doi: 10.1155/2011/734690
Chen, H., Guo, J., Wang, C., Luo, F., Yu, X. and W. Zhang (2020). Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records, Lancet., 395: 809-815. doi: 10.1016/S0140- 6736(20)30360-3
Cole, M.A., Ozgen, C. and E. Strobl (2020). Air pollution exposure and Covid-19 in Dutch municipalities. Environn Resource Econ., 76: 581-610. doi: 10.1007/s10640-020- 00491-4
Domingo, J.L., Marqu‘es, M. and J . Rovira (2020) Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ Res., 188: 109861. doi: 10.1016/j.envres.2020.109861
Eslami, H. and M. Jalili (2020). The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). Amb Express., 10: 92.. doi: 10.1186/s13568-020-01028-0
Flaxman, S., Mishra, S., Gandy, A., Unwin, H.J.T., Mellan, T.A., Coupland, H., Whittaker, C., Zhu, H., Berah, T., Eaton, J.W. and M. Monod (2020). Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature, 584: 257-261. https ://doi.org/10.1038/ s4158 6-020-2405-7
Forster, P.M., Forster, H.I., Evans, M.J., Gidden, M.J., Jones, C.D. and C.A. Keller (2020). Current and future global climate impacts resulting from COVID-19. Nat Clim Chan, 10: 913-919. doi: 10.1038/s41558-020-0883-0
Gale Cengage (2018). Global Warming Topic Overview. “Global Warming and Climate Change.” Opposing Viewpoints Online Collection, Gale, 2018 from http:// www.gale.com intl./Gale Cengage (@galecengage)/Twitter
Gardner, E.G., Kelton, D., Poljak, Z., Van Kerkhove, M., von Dobschuetz, S. and A.L. Greer (2019). A casecrossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome, BMC Infect Dis., 19: 113. doi: 10.1186/s12879-019-3729-5
Gilbert, M., Pullano, G., Pinotti, F., Valdano, E., Poletto, C. and Y. Boëlle (2020). Preparedness and vulnerability of African countries against importations of COVID-19: A modelling study. Lancet, 395: 871-877. doi: 10.1016/ S0140-6736(20)30411-6
Global Climate Report (2020). NOAA National Centers for Environmental Information. Published online April 2020, retrieved on August 2, 2020 from https://www.ncdc.noaa. gov/sotc/global/202003/supplemental/page-1
Horne, B.D., Joy, E.A., Hofmann, M.G., Gesteland, P.H., Cannon, J.B. and J.S. Lefler (2018). Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am J Respir Crit Care Med. 198: 759-766. Doi: 10.1164/rccm.201709-1883OC
Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., Druckenmiller, H., Huang, L.Y., Hultgren, A., Krasovich, E. and P. Lau (2020). The effect of largescale anti-contagion policies on the COVID-19 pandemic. Nature, 584: 262-267. https ://doi.org/10.1038/s4158 6-020-2404-8
IPCC (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental 46 Panel on Climate Change. Cambridge University Press, Cambridge, 1132. https:// doi.org/10.1017/CBO9781107415324
Islam, A.R.M.T., Hasanuzzaman, M., Azad, M.A.K., Salam, R., Toshi, F.Z. and M.S.I. Khan (2020). Effect of meteorological factors on COVID-19 cases in Bangladesh, Environ Dev Sustain, 23(6): 9139-9162. doi: 10.1007/ s10668-020-01016-1
Karia, R., Gupta, I., Khandait, H., Yadav, A. and A. Yadav (2020). COVID-19 and its modes of transmission. SN Compr Clin Med., 2: 1-4. doi: 10.1007/ s42399-020-00498-4
Klenert, D., Funk, F., Mattauch, L. and B. O’Callaghan (2020). Five lessons from COVID-19 for advancing climate change mitigation. Environmental and Resource Economics, 76: 751-778.
Kumar, G. and R.R. Kumar (2020). A correlation study between meteorological parameters and COVID-19 pandemic in Mumbai, India, Diabetes Metab Syndr., 14: 1735-1742. doi: 10.1016/j.dsx.2020.09.002
Kumari, P. and D. Toshniwal (2020). Impact of lockdown measures during COVID-19 on air quality–a case study of India. Int J Environ Health Res. Doi:10.108 0/09603123.2020.1778646
Le Quéré, C., Jackson, R.B., Jones, M.W., et al. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat Clim Chang., 10: 647-653. https://doi.org/10.1038/s4155 8-020-0797-x
Lolli, S. and G . Vivone (2020). The role of tropospheric ozone in flagging COVID-19 pandemic transmission. Bull Atmos Sci Technol., 1: 551-555. doi: 10.21203/ rs.3.rs-89804/v1
Marazziti, D., Cianconi, P., Mucci, F., Foresi, L., Chiarantini, C. and A. Della Vecchia (2021). Climate change, environment pollution, COVID-19 pandemic and mental health. Sci. Total Environ., 773: 145182. doi: 10.1016/j.scitotenv.2021.145182
Mostafa, M.K., Gamal, G. and A . Wafiq (2021). The impact of COVID 19 on air pollution levels and other environmental indicators-A case study of Egypt. J Environ Manage. 277: 111496. doi: 10.1016/j.jenvman.2020.11 1496
Mousazadeh, M., Paital, B., Naghdali, Z., Mortezania, Z., Hashemi, M. and E. Karamati Niaragh (2021). Positive environmental effects of the coronavirus 2020 episode: A review. Environ Dev Sust, 23(9): 12738-12760. doi: 10.1007/s10668-021-01240-3
National Centers for Environmental Information (2017). Climate at a Glance, National Centers for Environmental Information (NCEI). Retrieved June 28, 2017, from https:// www.ncdc.noaa.gov/cag/
Nogues-Bravo, D., Araujo, M.B., Errea, M.P. and J.P. Martinez-Rica (2007). Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 17: 420-428.
Paital, B. and P.K. Agrawal (2020). Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: A review, Environ Chem Lett., 19: 1-18. doi: 10.1007/s10311-020-01091-w
Pani, S.K., Lin, N.H. and S . Ravindra Babu (2020). Association of COVID-19 pandemic with meteorological parameters over Singapore, Sci Total Environ., 740: 140112. doi: 10.1016/j.scitotenv.2020.1401120
Paskus L (2016). http://www.nature.com/articles/ nclimate1304.epdf Pine, Juniper forests predicted to disappear.
Pope III, C.A., Burnett, R.T., Thurston, G.D., Thun, M.J., Calle, E.E. and D. Krewski (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease, Circulation, 109: 71-77. doi: 10.1161/01.CIR.0000108927.80044.7F
Pope III, C.A., Coleman, N., Pond, Z.A. and R.T. Burnett (2020). Fine particulate air pollution and human mortality: 25+ years of cohort studies, Environ Res., 183: 108924. doi: 10.1016/j.envres.2019.108924
Rodó, X., San-José, A., Kirchgatter, K. and L. López (2021). Changing climate and the COVID-19 pandemic: More than just heads or tails. Nat Med., 27: 576-579. doi: 10.1038/ s41591-021-01303-y
Rutz, C., Loretto, M.C., Bates, A.E., Davidson, S.C., Duarte, C.M. and W. Jetz (2020). COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife, Nat Ecol Evolut., 4: 1156-1159. doi: 10.1038/ s41559-020-1237-z
Sahin, M. (2020) Impact of weather on COVID-19 pandemic in Turkey, Sci Total Environ., 728: 138810. doi: 10.1016/j. scitotenv.2020.138810
Sangkham, S., Thongtip, S. and P. Vongruang (2021). Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok metropolitan region and air quality during the outbreak, Environ Res., 197: 111104. doi: 10.1016/j.envres.2021.111104
Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A. and A. Al-Jabir (2020). World health organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg., 76: 7176. doi: 10.1016/j.ijsu.2020.02.034
Tan, J., Mu, L., Huang, J., Yu, S., Chen, B. and J. Yin (2005). An initial investigation of the association between the SARS outbreak and weather: With the view of the environmental temperature and its variation, J Epidemiol Commun Health, 59: 186. doi: 10.1136/jech.2004.020180
Tirone, J. (2021). Earth’s margin for error narrows after another year of record heat. (2020 matched 2016 as the world’s hottest year on record). Bloomberg.com (8 January, 2021).
Wetchayont, P. (2021). Investigation on the impacts of COVID-19 lockdown and influencing factors on air quality in greater Bangkok, Thailand, Adv Meteorol, 2021: 6697707. doi: 10.1155/2021/6697707
Wu, X., Braun, D., Schwartz, J., Kioumourtzoglou, M.A. and F.J.S.A. Dominici (2020). Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly. Sci Adv, 6: eaba5692. doi: 10.1126/ sciadv.aba5692
Xie, J. and Y. Zhu (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci Total Environ., 754: 138201. doi: 10.1016 j.scitotenv.2020.138
Zhu, Y., Xie, J., Huang, F. and L. Cao (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci Total Environ., 727: 138704. doi: 10.1016/j.scitotenv.2020.138704
Zoran, M.A., Savastru, R.S., Savastru, D.M. and M.N. Tautan (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci Total Environ., 738: 139825. doi: 10.1016/j.scitotenv.2020.139825