AccScience Publishing / AJWEP / Volume 20 / Issue 2 / DOI: 10.3233/AJW230019
RESEARCH ARTICLE

Optimisation of Reverse-Osmosis Water Purification  Plant Powered by Hydro-Generators at the Dead Sea

Hazem W. Marar1*
Show Less
1 Computer/Electrical Engineering Department, Princess Sumaya University for Technology, Amman, Jordan
AJWEP 2023, 20(2), 9–15; https://doi.org/10.3233/AJW230019
Received: 13 May 2022 | Revised: 23 August 2022 | Accepted: 23 August 2022 | Published online: 23 August 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

With the Jordan River as its main tributary, the Dead Sea is a hyper-saline lake, which was formed around  140 centuries ago. Climate change used to be the principal driver of water level changes. However, anthropogenic  activities have recently emerged as a prominent source of excessive depletion. This study provides a realistic  strategy for desalinating the Red Sea water whilst generating electrical power for the Dead Sea conveyance project.  Seawater from the Gulf of Aqaba is transformed into highly concentrated saline water flowing to the Dead Sea  whilst delivering purified drinking water to nearby regions using reverse osmosis plants. Being an energy-intensive  process, a series of hydro-generators with efficient energy recovery devices will minimise the running cost by half.

Keywords
Reverse osmosis
hydro-power
conveyance project
Dead Sea
desalination.
References

Abelson, M., Gidon, B., Shtivelman, V., Wachs, D., Raz,  E., Crouvi, O., Ittai Kurzon, I. and Y. Yechieli (2003).  Collapse-sinkholes and radar interferometry reveal  neotectonics concealed within the Dead Sea basin.  Geophysical Research Letters, 30(10).

Ammous, M. and M. Chaabene (2014). Design of a PV/T  based desalination plant: Concept and assessment. In: 2014  5th International Renewable Energy Congress (IREC),  IEEE, pp. 1-6.

Casini, M. (2015). Harvesting energy from in-pipe hydro  systems at urban and building scale. International Journal  of Smart Grid and Clean Energy, 4(4): 316-327.

Davenport, D.M., Deshmukh, A., Werber, J.R. and M.  Elimelech (2018). High-pressure reverse osmosis for  energy-efficient hypersaline brine desalination: Current  status, design considerations, and research needs.  Environmental Science & Technology Letters, 5(8): 467- 475.

Fawzi, M. and M.I. Al Ajlouni (2021). Water safety  plan resources in jordan quantity and quality.  Preprints 2021, 2021070709. https://doi.org/10.20944/ preprints202107.0709.v1.

Gavrieli, I., Amos, B. and A. Oren (2005). The expected  impact of the “Peace Conduit” project (the Red Sea-Dead  Sea pipeline) on the Dead Sea. Mitigation and Adaptation  Strategies for Global Change, 10(4) : 759-777.

Gavrieli, I., Lensky, N., Abelson, M., Ganor, J., Aharon, O.,  Brenner, S., Lensky, I., Shalev, E., Yechieli, Y., Dvorkin,  Y., Gertman, I., Scott, W., Ehud, S., Rosentraub, Z. and  I. Reznik (2011, Aug 12). Red Sea-Dead Sea Water  Conveyance Study Program – Dead Sea Study. https:// doi.org/10.13140/RG.2.2.24893.72164

Huang, B., Kexin, P., Peng, W., Dazhuan, W. and J. Leng  (2020). Design, selection and application of energy  recovery device in seawater desalination: A review.  Energies, 13(16): 4150.

Jafari, M., Marjolein Vanoppen, J.M.C., van Agtmaal, E.R.,  Cornelissen, J.S.V., Arne, V., van Loosdrecht, M.C.M and  C. Picioreanu (2021). Cost of fouling in full-scale reverse  osmosis and nanofiltration installations in the Netherlands.  Desalination, 500: 114865.

Khlaifat, A., Mufeed, B., Khalid, N., Jamal, A. and E.  Talafeha (2020). Mixing of Dead Sea and Red Sea waters  and changes in their physical properties. Heliyon, 6(11): e05444.

Khodayar, S. and J. Hoerner (2020). An idealized model  sensitivity study on Dead Sea desertification with a focus  on the impact on convection. Atmospheric Chemistry and  Physics, 20(20): 12011-12031.

Kim, J., Kiho, P., Dae, R.Y. and S. Hong (2019). A  comprehensive review of energy consumption of seawater  reverse osmosis desalination plants. Applied Energy, 254: 113652.

Malkawi, A.I.H. and Y. Tsur (2016). Reclaiming the Dead  Sea: Alternatives for action. In: Society-Water-Technology,  Springer: Cham, pp. 205-225..

Markel, D., Jitzchak, A. and M. Beyth (2013). The Red Sea– Dead Sea conveyance feasibility study, 2008–2012. In: Water policy in Israel, pp. 181-191. Springer, Dordrecht.

Nehorai, R., Lensky, I.M., Lensky, N.G. and S. Shiff (2009).  Remote sensing of the Dead Sea surface temperature.  Journal of Geophysical Research: Oceans, 114, no. C5.

NEPCO (2022) The Kingdom’s Exports of Electricity Ups  to 108%.” Nationl Electric Power Company - Nepco  homepage. https://www.nepco.com.jo/en/news_page_ en.aspx?news_year=2020&news_ser_no=60#

Pierce, A. (2012). A New Spin on the Hydroelectric  Generation of Electricity. Tech Directions, 72(2): 11.

Raghukumar, C., ed. (2012). Biology of marine fungi. Vol.  53. Springer Science & Business Media.

Ramanathan, V. and Y. Feng (2009). Air pollution,  greenhouse gases and climate change: Global and regional  perspectives. Atmos Environ, 43: 37-50.

Sawaki, N. and C.-L. Chen (2021). Cost evaluation for a  two-staged reverse osmosis and pressure retarded osmosis  desalination process. Desalination, 497: 114767.

Voutchkov, N. (2018). Energy use for membrane seawater  desalination – current status and trends. Desalination,  431: 2-14. 

Werber, J.R., Deshmukh, A. and M. Elimelech (2016). The  critical need for increased selectivity, not increased water  permeability, for desalination membranes. Environ Sci  Tech Let, 3: 112-120.

World Energy Council. World Energy Resources, 2013 Survey  (2013). pp. 1-468

Yadav, G.K. and Md. Ahmaruzzaman (2021). Recent  advances in the development of nanocomposites for  effective removal of pesticides from aqueous stream.  Journal of Nanoparticle Research, 23(9): 1-31.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing