AccScience Publishing / AJWEP / Volume 20 / Issue 6 / DOI: 10.3233/AJW230082
RESEARCH ARTICLE

Utilisation of Clamshell Waste for Removing Mercury From Water: Fixed Bed Adsorption and Modelling Studies

S. Baskar1* K.R. Aswin Sidhaarth1 L. Mangaleshwaran2
Show Less
1 Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
2 Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India
AJWEP 2023, 20(6), 77–85; https://doi.org/10.3233/AJW230082
Submitted: 26 September 2022 | Revised: 4 August 2023 | Accepted: 4 August 2023 | Published: 27 November 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The present communication investigated the sustainable utilization of the clamshell waste powder (CSP) for eliminating mercury through fixed bed adsorption. This CSP is freshly prepared and packed in a stable multi-port column. Their breakthrough performance in the column is evaluated by varying its bed depth (5, 10, 15, 20 and 25 min) and flow rate (8, 10 and 12 mL/min). The CSP column’s design parameters and kinetic behavior are estimated from its breakthrough curve and validated using column models. The results revealed that slow saturation of the CSP bed and maximum adsorption capacity (2.8 mg/g) occurred at lower column depth (5 cm) and elevated influent flow rates (12 mL/min). Moreover, the mass transfer zone exhibited fluctuations with elevated column depth, indicating the presence of non-ideal conditions. The YN model showed superior fitness for mercury removal using CSP. The dynamic studies showed that CSP is a cost-effective, eco-friendly, biocompatible and sustainable adsorbent that can be successfully employed for treating industrial effluent.

Keywords
Adsorption
clam shell
dynamic modelling
fixed bed column
mercury removal
Conflict of interest
The authors declare they have no competing interests.
References

Amiri, M.J., Abedi-Koupai, J. and S. Eslamian (2017).  Adsorption of Hg (II) and Pb (II) ions by nanoscale zero  valent iron supported on ostrich bone ash in a fixed-bed  column system. Water Science and Technology, 76(3): 671-682.

Asikin-Mijan, N., Taufiq-Yap, Y.H. and H.V. Lee (2015).  Synthesis of clamshell derived Ca(OH)2 nano-particles  via simple surfactant-hydration treatment. Chemical  Engineering Journal, 262: 1043-1051.

Babazadeh, M., Abolghasemi, H., Esmaeili, M., Ehsani,  A. and A. Badiei (2021). Comprehensive batch and  continuous methyl orange removal studies using surfactant  modified chitosan-clinoptilolite composite. Separation and  Purification Technology, 267: 118601.

Chowdhury, S. and P. Saha (2013). Artificial neural network  (ANN) modeling of adsorption of methylene blue by  NaOH modified rice husk in a fixed-bed column system.  Environmental Science and Pollution Research, 20(2): 1050-1058.

Das, L., Sengupta, S., Das, P., Bhowal, A. and C. Bhattacharjee  (2021). Experimental and numerical modeling on dye  adsorption using pyrolyzed mesoporous biochar in batch  and fixed-bed column reactor: Isotherm, thermodynamics,  mass transfer, kinetic analysis. Surfaces and Interfaces, 23: 100985.

De, S., Hazra, T. and A. Dutta (2019). Assessment of removal  of mercury from landfill leachate by electrocoagulation. In: Kundu, R., Narula, R., Paul, R. and S. Mukherjee (eds.).  Environmental Biotechnology For Soil and Wastewater  Implications on Ecosystems. Springer, Singapore. pp. 21- 27. https://doi.org/10.1007/978-981-13-6846-2_4

El Haddad, M., Regti, A., Laamari, M.R., Slimani, R.,  Mamouni, R., El Antri, S. and S. Lazar (2014). Calcined  mussel shells as a new and eco-friendly biosorbent to  remove textile dyes from aqueous solutions. Journal of the  Taiwan Institute of Chemical Engineers, 45(2): 533-540.

Ghasemi, S.S., Hadavifar, M., Maleki, B. and E. Mohammadnia  (2019). Adsorption of mercury ions from synthetic aqueous  solution using polydopamine decorated SWCNTs. Journal  of Water Process Engineering, 32: 100965.

Gong, L., Kong, Y., Wu, H., Ge, Y. and Z. Li (2021). Sodium  alginate microspheres interspersed with modified lignin  and bentonite (SA/ML-BT) as a green and highly effective  adsorbent for batch and fixed-bed column adsorption of Hg  (II). Journal of Inorganic and Organometallic Polymers  and Materials, 31(2): 659-673.

Hassan, A.F. and R. Hrdina (2018). Chitosan/ nanohydroxyapatite composite based scallop shells as an  efficient adsorbent for mercuric ions: Static and dynamic  adsorption studies. International Journal of Biological  Macromolecules, 109: 507-516.

Hernandez-Eudave, M.T., Bonilla-Petriciolet, A., MorenoVirgen, M.R., Rojas-Mayorga, C.K. and R. TovarGómez (2016). Design analysis of fixed-bed synergic  adsorption of heavy metals and acid blue 25 on activated  carbon. Desalination and Water Treatment, 57(21): 9824- 9836.

Idan, I.J., Abdullah, L., Jamil, S., Obaid, M. and T. Choong  (2017). Fixed-bed system for adsorption of anionic acid  dyes from binary solution onto quaternized kenaf core  fiber. BioResources, 12(4): 8870-8885.

Jayalakshmi, R. and J. Jeyanthi (2019). Simultaneous  removal of binary dye from textile effluent using  cobalt ferrite-alginate nanocomposite: Performance and  mechanism. Microchemical Journal, 145: 791-800.

Jayalakshmi, R. and J. Jeyanthi (2021). Dynamic modelling  of alginate-cobalt ferrite nanocomposite for removal of  binary dyes from textile effluent. Journal of Environmental  Chemical Engineering, 9(1): 104924.

Jayalakshmi, R., Jeyanthi, J. and K.A. Sidhaarth (2022).  Versatile application of cobalt ferrite nanoparticles for  the removal of heavy metals and dyes from aqueous  solution. Environmental Nanotechnology, Monitoring &  Management, 17: 100659.

Jayaswal, K., Sahu, V. and B.R. Gurjar (2018). Water  pollution, human health and remediation. In: Bhattacharya,  S., Gupta, A., Gupta, A. and A. Pandey (eds.). Water  Remediation. Energy, Environment, and Sustainability. pp.  11-27. Springer, Singapore. https://doi.org/10.1007/978- 981-10-7551-3_2

Mishra, A., Tripathi, B.D. and A.K. Rai (2016). Packedbed column biosorption of chromium (VI) and nickel  (II) onto Fenton modified Hydrilla verticillata dried  biomass. Ecotoxicology and Environmental Safety, 132: 420-428. 

Murphy, J.N. and F.M. Kerton (2017). Characterization and  utilization of waste streams from mollusc aquaculture and  fishing industries, In: Kerton, F.M. and N. Yan (eds.).  Fuels, Chemicals and Materials from the Oceans and  Aquatic Sources, 58: 189-225. John Wiley & Sons Ltd.

Naushad, M., Ahamad, T., AlOthman, Z.A. and H.  Ala’a (2019). Green and eco-friendly nanocomposite  for the removal of toxic Hg (II) metal ion from  aqueous environment: Adsorption kinetics & isotherm  modelling. Journal of Molecular Liquids, 279: 1-8.

Nithya, K., Sathish, A. and P.S. Kumar (2020). Packed  bed column optimization and modeling studies for  removal of chromium ions using chemically modified  Lantana camara adsorbent. Journal of Water Process  Engineering, 33: 101069.

Nithya, K., Sathish, A. and P. Senthil Kumar (2021). Magnetite  encapsulated alginates tailored material for the sustainable  treatment of electroplating industrial wastewater: Column  dynamics and mass transfer studies. Clean Technologies  and Environmental Policy, 23(1): 89-102.

Núñez, D., Serrano, J.A., Mancisidor, A., Elgueta, E.,  Varaprasad, K., Oyarzún, P., et al. (2019). Heavy metal  removal from aqueous systems using hydroxyapatite  nanocrystals derived from clam shells. RSC  Advances, 9(40): 22883-22890.

Papadimitriou, C.A., Krey, G., Stamatis, N. and A. Kallianiotis  (2017). The use of waste mussel shells for the adsorption  of dyes and heavy metals. Journal of Chemical Technology  & Biotechnology, 92(8): 1943-1947.

Qu, J., Song, T., Liang, J., Bai, X., Li, Y., Wei, Y. and Y.U.  Jin (2019). Adsorption of lead (Ⅱ) from aqueous solution  by modified Auricularia matrix waste: A fixed-bed column  study. Ecotoxicology and Environmental Safety, 169: 722-729. 

Qu, T., Yao, X., Owens, G., Gao, L. and H. Zhang (2022).  A sustainable natural clam shell derived photocatalyst for  the effective adsorption and photodegradation of organic  dyes. Scientific Reports, 12(1): 1-14.

Rangabhashiyam, S., Anu, N. and N. Selvaraju (2013).  Sequestration of dye from textile industry wastewater  using agricultural waste products as adsorbents. Journal  of Environmental Chemical Engineering, 1(4): 629-641.

Santhosh, S. and S.B. Prabu (2012). Synthesis and  characterisation of nanocrystalline hydroxyapatite from sea  shells. International Journal of Biomedical Nanoscience  and Nanotechnology, 2(3-4): 276-283.

Singh, D.K., Kumar, V., Mohan, S., Bano, D. and S.H.  Hasan (2017). Breakthrough curve modeling of graphene  oxide aerogel packed fixed bed column for the removal  of Cr (VI) from water. Journal of Water Process  Engineering, 18: 150-158. 

Sugashini, S. and K.M.M.S. Begum (2014). Performance  of Fe‐loaded chitosan carbonized rice husk beads (Fe‐ CCRB) for continuous adsorption of metal ions from  industrial effluents. Environmental Progress & Sustainable  Energy, 33(4): 1125-1138. 

Sumesh, E., Bootharaju, M.S. and T. Pradeep (2011). A  practical silver nanoparticle-based adsorbent for the  removal of Hg2+ from water. Journal of Hazardous  Materials, 189(1-2): 450-457.

Suresh, P., Sharmila, N. and V.K. Ch (2019). ICP-OES  determination of trace metals in groundwater of Proddatur  area, YSR Kadapa dist., AP-India. Caribbean Journal of  Sciences and Technology (CJST), 7(1): 001-007.

Tsai, C.Y., Liu, C.W., Hsi, H.C., Lin, K.S., Lin, Y.W. and  L.C. Lai (2019). Synthesis of Ag‐modified TiO2 nanotube  and its application in photocatalytic degradation of dyes  and elemental mercury. Journal of Chemical Technology  & Biotechnology, 94(10): 3251-3262.

Urgun-Demirtas, M., Benda, P.L., Gillenwater, P.S., Negri,  M.C., Xiong, H. and S.W. Snyder (2012). Achieving very  low mercury levels in refinery wastewater by membrane  filtration. Journal of Hazardous Materials, 215: 98-107.

Vishalia, S., Mullaib, P. and R. Karthikeyanc (2019).  Breakthrough studies and mass transfer studies on  the decolorization of paint industry wastewater  using encapsulated beads of Cactus opuntia (Ficusindica). Desalination and Water Treatment, 177: 89-101.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing