AccScience Publishing / AJWEP / Volume 19 / Issue 3 / DOI: 10.3233/AJW220044
RESEARCH ARTICLE

Creating a Soil Map Using Digital Soil Mapping on the  Example of the Diurtiulinsky Municipal District 

Elina Shafeeva1* Ilnur Miftakhov1 Marat Ishbulatov1 Oleg Lykasov1
Show Less
1 Department of Real Estate Cadastre and Geodesy, Federal State Budgetary Educational Establishment of Higher Education “Bashkir State Agrarian University”, Ufa, Russian Federation
AJWEP 2022, 19(3), 89–95; https://doi.org/10.3233/AJW220044
Submitted: 2 August 2021 | Revised: 15 April 2022 | Accepted: 15 April 2022 | Published: 11 May 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The study describes the use of machine learning methods, geostatistics, etc. in establishing soil properties  depending on various classes of soil. The most commonly used data are information from spectral reflectance  bands of satellite images and terrain models. Besides, there is also great potential for creating new data tiers. The  study relies on a method known as SCORPAN-SSPFe, which assumes spatial error autocorrelation as a standalone  function. This method is actively used in places where there is not enough information about soil data. Besides,  four types of interpolation were compared using the SCORPAN method: multiple linear regression, cubistic model,  cubistic model with kriging and random forest model, which use extensive but common values of soil properties  associated with soil classes. The research result is obtained by applying the method to conduct large-scale soil  surveys, which determines the purpose and relevance of our study

Keywords
Soil mapping
GIS technologies
geostatistical modelling
geoinformation system
methods of digital soil mapping
Conflict of interest
The authors declare they have no competing interests.
References

Arnold, R.W. (2006). Soil survey and soil classification. Environmental soil-landscape modeling:  Geographic information technologies and pedometrics.  Taylor & Francis Group, Boca Raton, FL, 37-60 pp.

Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink,  A.E. and S. Kienast-Brown (Eds.). (2010). Digital soil  mapping: Bridging research, environmental application,  and operation. Springer Science & Business Media.

Chai, H., Rao, S., Wang, R., Liu, J., Huang, Q. and X. Mou  (2015). The effect of the geomorphologic type as surrogate  to the time factor on digital soil mapping. Open Journal  of Soil Science, 5(06): 123.

Coca-Castro, A., Gutierrez-Díaz, J.S., Camacho, V., López,  A.F., Escudero, P., Serrato, P.K. and J. González (2021).  Optimized data-driven pipeline for digital mapping  of quantitative and categorical properties of soils in  Colombia. Revista Brasileira de Ciência do Solo, 45: e0210084.

Hewitt, A., Dominati, E., Webb, T. and T. Cuthill (2015).  Soil natural capital quantification by the stock adequacy  method. Geoderma, 241: 107-114.

Iaparov, I.M. (2005). Atlas of the Republic of Bashkortostan.  Kitap, Ufa. Kaladhar, D.S.V.G.K., Pottumuthu, B.K., Rao, P.V.N.,  Vadlamudi, V., Chaitanya, A.K. and R.H. Reddy  (2013). The elements of statistical learning in colon  cancer datasets: Data mining, inference and prediction.  Algorithms Research, 2(1): 8-17.

Kempen, B., Yigini, Y., Viatkin, K., de Jesus, J. M., de Sousa,  L.M., van den Bosch, R. and R. Vargas (2019, January).  The Global Soil Information System (GloSIS)–concept  and design. In: Geophysical Research Abstracts (Vol. 21).

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C.,  Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty,  M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y. and C. Candan (2016). Caret: Classification and regression  training. R Core Team. Available from: http://www.Rproject.org/.

Malone, B.P., Odgers, N.P., Stockmann, U., Minasny, B. and  A. McBratney (2018). Digital mapping of soil classes and  continuous soil properties. In: Pedometrics (pp. 373-413).  Springer, Cham.

Minasny, B., McBratney, A.B., Malone, B.P. and I. Wheeler  (2013). Digital mapping of soil carbon. Advances in  Agronomy, 118: 1-47

 Steinbuch, L., Orton, T. and D. Brus (2019). Model-based  geostatistics from a Bayesian perspective: Investigating  area-to-point kriging with small data sets. Mathematical  Geosciences, 52: 1-27.

Odgers, N.P., McBratney, A.B. and B. Minasny (2015).  Digital soil property mapping and uncertainty estimation using soil class probability rasters. Geoderma, 237: 190- 198

Webster, R. and M.A. Oliver (2013). Geostatistics for  Environmental Scientists, second edition. John Wiley &  Sons, Chichester.

Webster, R. and M.A. Oliver (2016). Modeling spatial  variation of soil as random functions. In: Environmental  soil–landscape modeling: Geographic information  technologies and pedometrics. CRC Press, Boca Raton,  FL, 241-289 pp.

Zhang, G.L., Feng, L.I.U. and X.D. Song (2017). Recent  progress and future prospect of digital soil mapping: A  review. Journal of Integrative Agriculture, 16(12): 2871- 2885.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing