AccScience Publishing / AJWEP / Volume 19 / Issue 3 / DOI: 10.3233/AJW220035
RESEARCH ARTICLE

Leaching of Sulphate From Biochar and Phosphogypsum Biochar for the Treatment of Acidic Red Soil 

Lipsa Panda1 Manish Kumar2 Abanti Pradhan3*
Show Less
1 Environmental Science, Department of Chemistry, Institute of Technical Education and Research (ITER) Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
2 CSIR, IMMT, Bhubaneswar, Odisha, India
3 Department of Chemistry and BBRC, Institute of Technical Education and Research (ITER) Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
AJWEP 2022, 19(3), 23–29; https://doi.org/10.3233/AJW220035
Submitted: 12 May 2021 | Revised: 18 October 2021 | Accepted: 18 October 2021 | Published: 11 May 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Recycling of solid waste resources for agricultural applications is one of the best strategies to tackle  environmental and agricultural problems. Biochar is a solid carbon-rich material (mainly alkaline pH) produced  through thermal heating in the absence of oxygen from waste biomass. On the other hand, phosphogypsum is an  acidic sulphur-rich (calcium sulphate dihydrate) waste generated from phosphoric acid plant. It is generally applied  in the alkaline or sodic agricultural soil as calcium sulphur fertiliser. The major limitation of phosphogypsum  is that it cannot be used for acidic soil due to its acidic pH. To target this challenge, the application of biocharphosphogypsum composite (BPC) material produced through co-pyrolysis of banana peduncle biomass and  phosphogypsum at 700°C was studied for acidic red soil. The short-term (41 days) leaching experiments were  conducted for evaluating the sulphate leaching from the BPC treated acidic red soil. The results showed an increase  in sulphate leachability from the BPG with time, which indicates its potential to replenish sulphur in acidic red soils.

Keywords
Biochar
phosphogypsum
leachate
banana peduncle
acidic soil
Conflict of interest
The authors declare they have no competing interests.
References

Alam, S.N., Khalid, Z., Singh, B., Guldhe, A., Shahi,  D.K. and K. Bauddh (2020). Application of biochar  in agriculture: A sustainable approach for enhanced  plant growth, productivity and soil health. Ecological  and Practical Applications for Sustainable Agriculture.  Springer, Singapore, pp. 107-130.

Bojórquez-Quintal, E., Escalante-Magaña, C., EchevarríaMachado, I. and M. Martínez-Estévez (2017). Aluminium,  a friend or foe of higher plants in acid soils. Frontiers in  Plant Science, 8: 1767. 

Campos, P., Knicker, H., López, R., la Rosa, D. and J.  María (2021). Application of biochar produced from crop  residues on trace elements contaminated soils: Effects on  soil properties, enzymatic activities and Brassica rapa growth. Agronomy, 11(7): 1394.

Cybulak, M., Sokołowska, Z., Boguta, P. and A. Tomczyk  (2019). Influence of pH and grain size on physicochemical  properties of biochar and released humic substances.  Fuel, 240: 334-338.

Dash, A.K., Pradhan, A., Das, S. and S.S. Mohanty (2015).  Fly ash as a potential source of soil amendment in  agriculture and a component of integrated plant nutrient  supply system. Journal of Industrial Pollution Control,  31(2): 251-259. 

Gao, X., Peng, Y., Zhou, Y., Adeel, M. and Q. Chen (2019).  Effects of magnesium ferrite biochar on the cadmium  passivation in acidic soil and bioavailability for packoi  (Brassica chinensisL.). Journal of Environmental  Management, 251: 109610.

Goulding, K.W.T. (2016). Soil acidification and the importance  of liming agricultural soils with particular reference to  the United Kingdom. Soil Use and Management, 32(3): 390-399.

Guo, P., Li, Q., Qi, Y.P., Yang, L.T., Ye, X., Chen, H.H. and L.S.  Chen (2017). Sulfur-mediated-alleviation of aluminiumtoxicity in Citrus grandis seedlings. International Journal  of Molecular Sciences, 18(12): 2570.

Halim, A., Sa’adah, N., Abdullah, R., Karsani, S.A., Osman,  N., Panhwar, Q.A. and C.F. Ishak (2018). Influence of soil  amendments on the growth and yield of rice in acidic soil.  Agronomy, 8(9): 165.

He, L., Zhao, J., Yang, S., Zhou, H., Wang, S., Zhao, X. and  G. Xing ( 2020). Successive biochar amendment improves  soil productivity and aggregate microstructure of a red soil  in a five-year wheat-millet rotation pot trial. Geoderma,  376: 114570. 

Karim, A.A., Kumar, M., Mohapatra, S. and S.K. Singh  (2019). Nutrient rich biomass and effluent sludge  wastes co-utilization for production of biochar fertilizer  through different thermal treatments. Journal of Cleaner  Production, 228: 570-579.

Lin, Q., Zhang, L., Riaz, M., Zhang, M., Xia, H., Lv, B. and  C. Jiang (2018). Assessing the potential of biochar and aged biochar to alleviate aluminium toxicity in an acid  soil for achieving cabbage productivity. Ecotoxicology  and Environmental Safety, 161: 290-295.

Lin, Q., Zhang, L., Riaz, M., Zhang, M., Xia, H., Lv, B. and  C. Jiang (2018). Assessing the potential of biochar and  aged biochar to alleviate aluminium toxicity in an acid  soil for achieving cabbage productivity. Ecotoxicology  and Environmental Safety, 161: 290-295.

Masud, M.M., Li, J.Y. and R.K. Xu (2015). Application  of alkaline slag and phosphogypsum for alleviating  soil acidity in an Ultisol profile: A short-term leaching  experiment. Journal of Soils and Sediments, 15(2): 365- 373.

Mosharrof, M., Uddin, M., Sulaiman, M.F., Mia, S.,  Shamsuzzaman, S.M. and A.N.A Haque (2021).  Combined application of biochar and lime increases  maize yield and accelerates carbon loss from an acidic  soil. Agronomy, 11(7): 1313.

Padhan, A. and S.K. Sahu (2012). Effect of rice mill  wastewater on soil respiration and enzyme activities  under fields and pot conditions. Asian Journal of Water,  Environment and Pollution, 9(2): 61-71.

Panhwar, Q.A., Naher, U.A., Radziah, O., Shamshuddin, J.  and I.M. Razi (2015). Eliminating aluminium toxicity in  an acid sulfate soil for rice cultivation using plant growth  promoting bacteria. Molecules, 20(3): 3628-3646.

Peng, X., Deng, Y., Zhang, X., Liu, L., Hu, J., Duan, X. and  K. Shen (2020) The leaching characteristics of common  toxic elements in phosphogypsum. Geochemistry:  Exploration, Environment, Analysis, 20(4): 473-479.

Pradhan, A., Sahu, S.K. and A.K. Dash (2016). Changes  in physico chemical characteristic of soil following  application of rice mill wastewater under field irrigation  conditions. Advanced Science Letter, 22(2): 504-510.

Pradhan, A, Sahu, S.K. and A.K. Dash (2013). Changes in  pigment content (chlorophyll and carotenoid), enzymes  activities (catalase and peroxidase), biomass and yield  of rice plant (Oriza sativa L.) following irrigation of rice  mill wastewater under pot culture conditions. International  Journal of Scientific and Engineering Research, 4(6): 2706-2717.

Pradhan, A., Dash, A.K., Mohanty, S.S. and S. Das (2015).  Potential use of fly ash in floriculture: A case study on  photosynthetic pigment content and vegetative growth  of Tageteserecta (Marigold). Ecology, Environment and  Conservation, 21: 369-376.

Pradhan, A., Sahu, S.K. and A.K. Dash (2015). Changes  in Physico-chemical Characteristics of Soil Following  Application of Rice Mill Wastewater under Field Irrigation  Conditions. In: “Advances in Environmental Sciences and  Engineering”. Publ. - Daya Publishing House, a division  of Astral Int. Pvt., Ltd. New Delhi. pp. 480-492. (ISBN:  978-93-5124-336-6 (Hardbound). ISBN: 978-93-5130- 300-8 (Int. Edn).

Shetty, R. and N.B. Prakash (2020). Effect of different  biochars on acid soil and growth parameters of rice plants  under Aluminium toxicity. Scientific Reports, 10(1): 1-10. Shetty, R., Vidya, C.S.N., Prakash, N.B., Lux, A. and  M. Vaculík (2020). Aluminium toxicity in plants and  its possible mitigation in acid soils by biochar: A  review. Science of the Total Environment, 765: 142744.

Siedt, M., Schäffer, A., Smith, K.E., Nabel, M., Roß-Nickoll,  M. and J.T. VanDongen (2020). Comparing straw, compost,  and biochar regarding their suitability as agricultural soil  amendments to affect soil structure, nutrient leaching,  microbial communities and the fate of pesticides. Science  of the Total Environment, 751: 141607.

Singh, S., Durgesh, K.T., Singh, S., Sharma S., Dubey,  N.K., Chauhan, D.K. and M. Vaculík (2017). Toxicity of  aluminium on various levels of plant cells and organism:  A review. Environmental and Experimental Botany, 137: 177-193.

Teng, W., Kang, Y., Hou, W., Hu, H., Luo, W., Wei, J.  and B. Zhang (2018). Phosphorus application reduces  aluminium toxicity in two Eucalyptus clones by increasing  its accumulation in roots and decreasing its content in  leaves. PloS ONE, 13(1): e0190900.

Tomczyk, A., Sokołowska, Z. and P. Boguta (2020). Biochar  physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science  and Bio/Technology, 19(1): 191-215.

Ullah, Z., Ali, S., Muhammad, N., Khan, N., Rizwan,  M., Khan, M.D. and N. Ali (2020). Biochar impact on  microbial population and elemental composition of red  soil. Arabian Journal of Geosciences, 13(16): 1-9.

Wu, S., Zhang, Y., Tan, Q., Sun, X., Wei, W. and C. Hu  (2020). Biochar is superior to lime in improving acidic soil  properties and fruit quality of Satsuma mandarin. Science  of the Total Environment, 714: 136722.

Xia, H., Riaz, M., Zhang, M., Liu, B., El-Desouki, Z. and C.  Jiang (2020). Biochar increases nitrogen use efficiency of  maize by relieving aluminium toxicity and improving soil  quality in acidic soil. Ecotoxicology and Environmental  Safety, 196: 110531.

Xing, J., Xu, G. and G. Li (2021). Comparison of  pyrolysis process, various fractions and potential soil  applications between sewage sludge-based biochar  and lignocellulose-based biochar. Ecotoxicology and  Environmental Safety, 208: 111756.

Zhou, X.X., Yang, L.T., Qi, Y.P., Guo, P. and L.S. Chen  (2015). Mechanisms on boron-induced alleviation of  aluminium-toxicity in Citrus grandis seedlings at a  transcriptional level revealed by cDNA-AFLP analysis.  PLoS One, 10(3): e0115485.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing