AccScience Publishing / AJWEP / Volume 19 / Issue 3 / DOI: 10.3233/AJW220038
RESEARCH ARTICLE

Sawdust as Low-Cost Adsorbents for the Removal of  Heavy Metals From Water

Md Ahmaruzzaman1*
Show Less
1 Department of Chemistry, National Institute of Technology, Silchar - 788010, Assam, India
AJWEP 2022, 19(3), 45–50; https://doi.org/10.3233/AJW220038
Submitted: 25 May 2021 | Revised: 19 April 2022 | Accepted: 19 April 2022 | Published: 11 May 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sawdust is currently investigated as a sorbent to eliminate heavy metals from wastewater and other  aqueous solutions. The raw material is relatively cheap and is available in abundance. Sawdust also helps to eradicate  other contaminants, such as dyes, pesticides, phenols, toxic salts, etc. This literature discusses the elimination  of heavy metals from wastewater through the help of sawdust. The composition of the sawdust, and the work  done concerning the sorption of heavy metals, kinetics, adsorption isotherm, etc., are discussed in this study. The  adsorption capacity of sawdust depends on the concentration of adsorbate, composition and characterisation of  adsorbent, and the type of modifications. Also, the challenges faced during research are mentioned in this literature.  More research should be done in this field to enhance the use of sawdust on large-scale cost-effectively

Keywords
Sawdust
adsorption
isotherm
kinetics
heavy metals
Conflict of interest
The authors declare they have no competing interests.
References

Ahmaruzzaman, M. (2021). Biochar based nanocomposites  for photocatalytic degradation of emerging organic  pollutants from water and wastewater. Materials Research  Bulletin, 140: 111262.

Ajmal, M., Sulaiman, A.M. and A.H. Khan (1993).  Surface entrapment of toxic metals from electroplating  waste and their possible recovery. Water, Air, and Soil  Pollution, 68(3): 485-492.

Baral, S.S., Das, S.N. and P. Rath (2006). Hexavalent  chromium removal from aqueous solution by adsorption on  treated sawdust. Biochemical Engineering Journal, 31(3): 216-222.

Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat,  M.A., Dar, G.N. and A.H. Pandith (2019). Removal of  heavy metal ions from aqueous system by ion-exchange  and biosorption methods. Environmental Chemistry  Letters, 17(2): 729-754.

Bryant, P.S., Petersen, J.N., Lee, J.M. and T.M. Brouns  (1992). Sorption of heavy metals by untreated red fir  sawdust. Applied Biochemistry and Biotechnology, 34(1): 777-788.

Bulut, Y. (2007). Removal of heavy metals from aqueous  solution by sawdust adsorption. Journal of Environmental  Sciences, 19(2): 160-166.

Chen, J.P., Chen, W.R. and R.C. Hsu (1996). Biosorption of  copper from aqueous solutions by plant root tissues. Journal  of Fermentation and Bioengineering, 81(5): 458-463. Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J. and Z. Huang  (2018). Comparison of heavy metal removals from aqueous  solutions by chemical precipitation and characteristics of  precipitates. Journal of Water Process Engineering, 26: 289-300.

Djeribi, R. and O. Hamdaoui (2008). Sorption of copper (II)  from aqueous solutions by cedar sawdust and crushed  brick. Desalination, 225(1-3): 95-112.

El Hajam, M., Kandri, N.I., Plavan, G.I., Harrath, A.H.,  Mansour, L., Boufahja, F. and A. Zerouale (2020). Pb2+ ions adsorption onto raw and chemically activated Dibetou  sawdust: Application of experimental designs. Journal of  King Saud University-Science, 32(3): 2176-2189.

El-Saied, F.A., Abo-Elenan, S.A. and F.H. El-Shinawy (2017).  Removal of lead and copper ions from polluted aqueous  solutions using nano-sawdust particles. International  Journal of Waste Resources, (7): 305.

Fiset, J.F., Blais, J.F., Ben Cheikh, R. and R. Dayal Tyagi  (2000). Review on metal removal from effluents by  adsorption on sawdusts and wood barks. Revue des  Sciences de l’Eau (France), 13(3): 325-349. Fu, F. and Q. Wang (2011). Removal of heavy metal ions  from wastewaters: A review. Journal of Environmental  Management, 92(3): 407-418.

Gadore, V. and M. Ahmaruzzaman (2021). Tailored fly  ash materials: A recent progress of their properties and  applications for remediation of organic and inorganic  contaminants from water. Journal of Water Process  Engineering, 41: 101910.

Gan, Q., Allen, S.J. and R. Matthews (2004). Activation  of waste MDF sawdust charcoal and its reactive dye  adsorption characteristics. Waste Management, 24(8): 841-848.

Geay, M., Marchetti, V., Clément, A., Loubinoux, B. and P.  Gérardin (2000). Decontamination of synthetic solutions  containing heavy metals using chemically modified  sawdusts bearing polyacrylic acid chains. Journal of Wood  Science, 46(4): 331-333.

Kapur, M. and M.K. Mondal (2013). Mass transfer and related  phenomena for Cr (VI) adsorption from aqueous solutions  onto Mangifera indica sawdust. Chemical Engineering  Journal, 218: 138-146.

Karthikeyan, T., Rajgopal, S. and L.R. Miranda (2005).  Chromium (VI) adsorption from aqueous solution by  Hevea brasilinesis sawdust activated carbon. Journal of  Hazardous Materials, 124(1-3): 192-199.

Larous, S., Meniai, A.H. and M.B. Lehocine (2005).  Experimental study of the removal of copper from aqueous  solutions by adsorption using sawdust. Desalination, 185(1- 3): 483-490.

Lim, J.H., Kang, H.M., Kim, L.H. and S.O. Ko (2008).  Removal of heavy metals by sawdust adsorption:  Equilibrium and kinetic studies. Environmental  Engineering Research, 13(2): 79-84.

Liu, D., Huang, Z., Li, M., Li, X., Sun, P. and I. Zhou (2020).  Construction of magnetic bifunctional β-cyclodextrin  nanocomposites for adsorption and degradation of  persistent organic pollutants. Carbohydrate Polymers, 230: 115564.

Liu, J., Shao, J., Wang, Y., Li, J., Liu, H., Wang, A. and S.  Chen (2019). Antimicrobial activity of zinc oxide–graphene  quantum dot nanocomposites: Enhanced adsorption  on bacterial cells by cationic capping polymers. ACS  Sustainable Chemistry & Engineering, 7(19): 16264- 16273.

Michalak, I., Chojnacka, K. and A. Witek-Krowiak  (2013). State of the art for the biosorption process—A  review. Applied Biochemistry and Biotechnology, 170(6): 1389-1416.

Mohammed-Ziegler, I., Oszlánczi, Á., Somfai, B., Hórvölgyi,  Z., Pászli, I., Holmgren, A., & Forsling, W. (2004). Surface  free energy of natural and surface-modified tropical and  European wood species. Journal of Adhesion Science and  Technology, 18(6): 687-713.

Munagapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R.  and K. Abburi (2010). Biosorption of Cu (II), Cd (II) and  Pb (II) by Acacia leucocephala bark powder: Kinetics,  equilibrium and thermodynamics. Chemical Engineering  Journal, 157(2-3): 357-365.

Nordine, N., El Bahri, Z., Sehil, H., Fertout, R. I., Rais, Z. and  Z. Bengharez (2016). Lead removal kinetics from synthetic  effluents using Algerian pine, beech and fir sawdust’s:  Optimization and adsorption mechanism. Applied Water  Science, 6(4): 349-358.

Odozi, T.O., Okele, S. and R.B. Lartey (1985). Studies on  binding metal ions with polymerized corn cob and a  composite resin with sawdust and onion skin. Agricultural  Wastes, 12(1): 13-21.

Park, D., Yun, Y.S. and J.M. Park (2010). The past, present,  and future trends of biosorption. Biotechnology and  Bioprocess Engineering, 15(1): 86-102.

Rafatullah, M., Sulaiman, O., Hashim, R. and A. Ahmad  (2009). Adsorption of copper (II), chromium (III), nickel  (II) and lead (II) ions from aqueous solutions by meranti  sawdust. Journal of Hazardous Materials, 170(2-3): 969- 977.

Rahman, M.S. and M.R. Islam (2009). Effects of pH on  isotherms modeling for Cu (II) ions adsorption using maple  wood sawdust. Chemical Engineering Journal, 149(1-3): 273-280.

Raji, C., Manju, G.N. and T.S. Anirudhan (1997). Removal  of heavy metal ions from water using sawdust-based  activated carbon. Indian Journal of Engineering and  Material Sciences, 4: 254-260.

Sahmoune, M.N. and A.R. Yeddou (2016). Potential of  sawdust materials for the removal of dyes and heavy metals:  examination of isotherms and kinetics. Desalination and  Water Treatment, 57(50): 24019-24034.

Samarghandi, M., Azizian, S., Siboni, M., Jafari, S. and S.  Rahimi (2011). Removal of divalent nickel from aqueous  solutions by adsorption onto modified holly sawdust:  Equilibrium and kinetics. Journal of Environmental Health  Science & Engineering, 8(2): 167-174.

Selvi, K., Pattabhi, S. and K. Kadirvelu (2001). Removal of  Cr (VI) from aqueous solution by adsorption onto activated  carbon. Bioresource Technology, 80(1): 87-89.

Semerjian, L. (2018). Removal of heavy metals (Cu, Pb)  from aqueous solutions using pine (Pinus halepensis)  sawdust: Equilibrium, kinetic, and thermodynamic  studies. Environmental Technology & Innovation, 12: 91-103.

Shukla, A., Zhang, Y.H., Dubey, P., Margrave, J.L. and S.S.  Shukla (2002). The role of sawdust in the removal of  unwanted materials from water. Journal of Hazardous  Materials, 95(1-2): 137-152.

Shukla, S.R. and V.D. Skhardande (1992). Column studies on  metal ion removal by dyed cellulosic materials. Journal  of Applied Polymer Science, 44(5): 903-910.

Sikdar, D., Goswami, S. and P. Das (2021). Synthesis of  activated carbon material using sawdust as precursor  and its application for dye removal: Batch study and  optimization using response surface methodology. Biomass  Conversion and Biorefinery, pp. 1-13.

Sis, H. and T. Uysal (2014). Removal of heavy metal ions from  aqueous medium using Kuluncak (Malatya) vermiculites  and effect of precipitation on removal. Applied Clay  Science, 95: 1-8.

Tang, X., Zheng, H., Zhao, C., Zhai, J., Liu, B., Chen, W. and  F. Li (2016). Removal of dissolved organic matter from  algae-polluted surface water by coagulation. Desalination  and Water Treatment, 57(53): 25337-25344.

Tare, V. and S. Chaudhari (1987). Evaluation of soluble and  insoluble xanthate process for the removal of heavy metals  from wastewaters. Water Research, 21(9): 1109-1118.

Wang, D., Kundert, K.L. and M.B. Emelko (2018).  Optimisation and improvement of in-line filtration  performance in water treatment for a typical low turbidity  source water. Environmental Technology, 41(2): 181-190.

Wijayawardena, M.A.A., Megharaj, M. and R. Naidu (2016).  Exposure, toxicity, health impacts, and bioavailability  of heavy metal mixtures. Advances in Agronomy, 138: 175-234.

Witek-Krowiak, A. (2013). Application of beech sawdust  for removal of heavy metals from water: biosorption and  desorption studies. European Journal of Wood and Wood  Products, 71(2): 227-236

Yu, B., Zhang, Y., Shukla, A., Shukla, S.S. and K.L. Dorris  (2001). The removal of heavy metals from aqueous  solutions by sawdust adsorption—removal of lead and  comparison of its adsorption with copper. Journal of  Hazardous Materials, 84(1): 83-94.

Zhang, Z., Wang, T., Zhang, H., Liu, Y. and B. Xing  (2021). Adsorption of Pb (II) and Cd (II) by magnetic  activated carbon and its mechanism. Science of The Total  Environment, 757: 143910.

Zhou, Y., Lu, J., Zhou, Y. and Y. Liu (2019). Recent  advances for dyes removal using novel adsorbents: A  review. Environmental Pollution, 252: 352-365.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing